首页> 外文期刊>Neurocomputing >Clustering and pattern search for enhancing particle swarm optimization with Euclidean spatial neighborhood search
【24h】

Clustering and pattern search for enhancing particle swarm optimization with Euclidean spatial neighborhood search

机译:聚类和模式搜索通过欧氏空间邻域搜索增强粒子群优化

获取原文
获取原文并翻译 | 示例

摘要

There are many well-known particle swarm optimization (PSO) algorithms which consider ring/star/von Neumann et al. topological neighborhood and scarcely aim at Euclidean spatial neighborhood structure. k-Nearest Neighbors (k-NN) is a kind of clustering method to find the necessary representatives among a group of objects efficiently. Pattern search (PS) is a successful derivative-free coordinate search method for global optimization. All these observations inspire the innovative ideas to propose an enhanced particle swarm optimization algorithm (pkPSO). Particles efficiently explore for the promising areas and solutions with clustering on the Euclidean spatial neighborhood structure. Particle swarm continuously exploits at the just found promising areas with PS strategy at the latter stage of optimization. The cooperative effect of k-NN and PS strategies is firstly verified. Based on classical, rotated and shifted benchmarks, extensive experimental comparisons indicate that pkPSO has a competitive performance when comparing with the well-known PSO variants and other evolutionary algorithms. (C) 2015 Elsevier B.V. All rights reserved.
机译:有许多著名的粒子群优化(PSO)算法都考虑了ring / star / von Neumann等人。拓扑邻域,几乎不针对欧几里得空间邻域结构。 k最近邻(k-NN)是一种在一组对象之间有效找到必要代表的聚类方法。模式搜索(PS)是一种成功的用于全局优化的无导数坐标搜索方法。所有这些观察结果激发了创新思想,提出了一种增强的粒子群优化算法(pkPSO)。通过在欧几里得空间邻域结构上进行聚类,粒子可以有效地探索有希望的区域和解决方案。在优化的后期,粒子群在PS策略中不断发现新发现的领域。首先验证了k-NN和PS策略的协同作用。基于经典,旋转和移位基准,广泛的实验比较表明,与知名的PSO变体和其他进化算法相比,pkPSO具有竞争优势。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号