首页> 外文期刊>Neurocomputing >Automatic multi-view registration of unordered range scans without feature extraction
【24h】

Automatic multi-view registration of unordered range scans without feature extraction

机译:自动多视图注册无序范围扫描,无需特征提取

获取原文
获取原文并翻译 | 示例

摘要

For 3D object modeling, this paper proposes an automatic approach for multi-view registration of unordered range scans by both the coarse and fine registration. In the coarse step, a spanning tree can be constructed by applying the presented approach for pair-wise registration of partially overlapping scans with the genetic algorithm (GA). To construct the spanning tree, the dual criterion is proposed to judge the reliability of pair-wise registration results. In this case, the first scan can be selected as the root node and other scans can be added by the breadth-first search with the reliable results of the pair-wise registration. Subsequently, coarse results for multi-view registration can be calculated from the constructed spanning tree. In the fine step, the coarse registration results can be viewed as the initial parameters of the trimmed iterative closest point (TrICP) algorithm to obtain the accurate object model. Without any feature extraction, this approach can automatically achieve the multi-view registration of unordered range scans. Experiments were performed on public datasets to show its superiority on robustness for multi-view registration of unordered range scans. (C) 2015 Elsevier B.V. All rights reserved.
机译:对于3D对象建模,本文提出了一种通过粗糙和精细配准来自动进行无序范围扫描的多视图配准的方法。在粗略步骤中,可以通过应用提出的方法与遗传算法(GA)进行部分重叠扫描的成对配准,从而生成生成树。为了构造生成树,提出了双重准则来判断成对配准结果的可靠性。在这种情况下,可以选择第一次扫描作为根节点,并通过广度优先搜索和成对注册的可靠结果来添加其他扫描。随后,可以从构造的生成树中计算出用于多视图配准的粗略结果。在精细步骤中,可以将粗略的配准结果视为修整的迭代最近点(TrICP)算法的初始参数,以获得准确的对象模型。无需提取任何特征,该方法即可自动实现无序范围扫描的多视图配准。在公共数据集上进行了实验,以显示其在无序范围扫描的多视图配准的鲁棒性方面的优越性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号