首页> 外文期刊>Neurocomputing >Unsupervised real-time anomaly detection for streaming data
【24h】

Unsupervised real-time anomaly detection for streaming data

机译:流数据的无监督实时异常检测

获取原文
获取原文并翻译 | 示例

摘要

We are seeing an enormous increase in the availability of streaming, time-series data. Largely driven by the rise of connected real-time data sources, this data presents technical challenges and opportunities. One fundamental capability for streaming analytics is to model each stream in an unsupervised fashion and detect unusual, anomalous behaviors in real-time. Early anomaly detection is valuable, yet it can be difficult to execute reliably in practice. Application constraints require systems to process data in real-time, not batches. Streaming data inherently exhibits concept drift, favoring algorithms that learn continuously. Furthermore, the massive number of independent streams in practice requires that anomaly detectors be fully automated. In this paper we propose a novel anomaly detection algorithm that meets these constraints. The technique is based on an online sequence memory algorithm called Hierarchical Temporal Memory (HTM). We also present results using the Numenta Anomaly Benchmark (NAB), a benchmark containing real-world data streams with labeled anomalies. The benchmark, the first of its kind, provides a controlled open-source environment for testing anomaly detection algorithms on streaming data. We present results and analysis for a wide range of algorithms on this benchmark, and discuss future challenges for the emerging field of streaming analytics. (C) 2017 The Author(s). Published by Elsevier B.V.
机译:我们看到流式,时序数据的可用性有了极大的提高。很大程度上受连接的实时数据源的兴起驱动,这些数据带来了技术挑战和机遇。流分析的一项基本功能是以无人监督的方式对每个流进行建模,并实时检测异常,异常行为。早期的异常检测很有价值,但实际上很难可靠地执行。应用程序限制要求系统实时处理数据,而不是批量处理。流式传输数据固有地表现出概念漂移,有利于不断学习的算法。此外,实践中大量独立流要求异常检测器是完全自动化的。在本文中,我们提出了一种满足这些约束的新颖的异常检测算法。该技术基于称为层次时间记忆(HTM)的在线序列记忆算法。我们还使用Numenta异常基准(NAB)展示了结果,该基准包含包含带有标记异常的真实数据流的基准。该基准测试是同类产品中的第一个,它提供了一个受控的开源环境来测试流数据上的异常检测算法。我们在此基准测试中提供了各种算法的结果和分析,并讨论了流分析新兴领域的未来挑战。 (C)2017作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号