首页> 外文期刊>Concurrency, practice and experience >Real-time anomaly detection using parallelized intrusion detection architecture for streaming data
【24h】

Real-time anomaly detection using parallelized intrusion detection architecture for streaming data

机译:使用并行入侵检测架构对流数据进行实时异常检测

获取原文
获取原文并翻译 | 示例

摘要

High usage levels of networking technologies has resulted in large amounts of data being generated. This in-turn has lured several fraudsters, whose anomalous behaviors create undesired consequences to legitimate users. This paper proposes an Adaptive Parallelized Intrusion Detection (APID) architecture to handle the hugeness and data imbalance associated with streaming data. The architecture is composed of a feature selection strategy to reduce data size, an effective data segregation mechanism to handle data imbalance and a heterogeneous ensemble and a heuristic combiner mechanism to provide effective predictions. Adaptivity is incorporated by the reinforcement mechanism that retrains the model based on false predictions given by the model. The proposed APID architecture is generic; hence, it supports heterogeneous models and can also incorporate any number of machine learning models. Hence, it becomes flexible to adapt the model to data pertaining to any domain. Experiments were performed with KDD CUP 99, NSL-KDD, and Koyoto 2006 datasets. Comparisons performed with recent works in literature indicates anomaly detection rates between 98% to 99% exhibiting the effectiveness of the proposed model.
机译:网络技术的高使用率导致生成大量数据。反过来又引诱了数名欺诈者,他们的异常行为给合法用户带来了不良后果。本文提出了一种自适应并行入侵检测(APID)架构,以处理与流数据相关的巨大和数据不平衡。该体系结构由减少数据大小的功能选择策略,处理数据不平衡的有效数据隔离机制,异构集合以及提供有效预测的启发式组合器机制组成。自适应机制是由增强机制合并而成的,该机制根据模型给出的错误预测对模型进行重新训练。提出的APID体系结构是通用的。因此,它支持异构模型,并且还可以合并任何数量的机器学习模型。因此,可以灵活地使模型适应与任何领域有关的数据。使用KDD CUP 99,NSL-KDD和Koyoto 2006数据集进行了实验。与文献中的最新工作进行的比较表明,异常检测率在98%至99%之间,显示了所提出模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号