首页> 外文OA文献 >Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks
【2h】

Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

机译:自主入侵检测:自适应检测计算机网络中未标记的审核数据流的异常

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.
机译:在这项工作中,我们提出了一种自动入侵检测的新颖框架,该框架可对计算机网络中未标记的HTTP通信流实现在线和自适应入侵检测。该框架具有自我管理的潜力:自我标记,自我更新和自我适应。我们的框架采用“相似性传播(AP)”算法,通过动态地对流数据进行聚类来了解对象的行为。它会自动标记数据并适应正常的行为更改,同时识别异常。我们研究所收集了两个实际的大型HTTP通信流以及一组基准KDD’99数据,以验证该框架和方法。测试结果表明,与自适应序列Karhunen-Loeve方法和静态AP以及其他三种静态异常检测方法(即k-NN,PCA和SVM)相比,该自主模型在有效性和效率上取得了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号