首页> 外文期刊>Neurocomputing >Ranking influential nodes in social networks based on node position and neighborhood
【24h】

Ranking influential nodes in social networks based on node position and neighborhood

机译:根据节点位置和邻域对社交网络中有影响力的节点进行排名

获取原文
获取原文并翻译 | 示例

摘要

Ranking influential nodes of networks is very meaningful for many applications, such as disease propagation inhibition and information dissemination control. Taking multiple attributes into consideration is a hopeful strategy. However, traditional multi-attribute ranking methods have some defects. Firstly, the computational complexity of these methods is usually higher than 0(n), inapplicable to large scale social networks. Secondly, contributions of different attributes are viewed as equally important, leading to the limited improvement in performance. This paper proposes a multi-attribute ranking method based on node position and neighborhood, with low computational complexity 0(n). The proposed method utilizes iteration information in the K-shell decomposition to further distinguish the node position and also fully considers the neighborhood's effect upon the influence capability of a node. Furthermore, the entropy method is used to weight the node position and neighborhood attributes. Experiment results in terms of monotonicity, correctness and efficiency have demonstrated the good performance of the proposed method on both artificial networks and real world ones. It can efficiently and accurately provide a more reasonable ranking list than previous approaches. Published by Elsevier B.V.
机译:对网络的有影响力的节点进行排名对于许多应用(例如疾病传播抑制和信息传播控制)非常有意义。考虑多种属性是一种有希望的策略。但是,传统的多属性排序方法存在一些缺陷。首先,这些方法的计算复杂度通常高于0(n),不适用于大规模的社交网络。其次,不同属性的贡献被视为同等重要,从而导致性能提升有限。提出了一种基于节点位置和邻域的多属性排序方法,计算复杂度为0(n)。所提出的方法利用K-shell分解中的迭代信息来进一步区分节点位置,并且充分考虑了邻域对节点影响能力的影响。此外,熵方法用于加权节点位置和邻域属性。在单调性,正确性和效率方面的实验结果证明了该方法在人工网络和现实网络中的良好性能。与以前的方法相比,它可以有效,准确地提供更合理的排名列表。由Elsevier B.V.发布

著录项

  • 来源
    《Neurocomputing》 |2017年第18期|466-477|共12页
  • 作者单位

    China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China|Univ North Carolina Charlotte, Dept Comp Sci, Charlotte, NC 28223 USA;

    China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China;

    Univ North Carolina Charlotte, Dept Comp Sci, Charlotte, NC 28223 USA;

    China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social networks; Node influence capability; K-shell decomposition; Iteration information; Neighborhood;

    机译:社交网络;节点影响能力;K-shell分解;迭代信息;邻居;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号