首页> 外文期刊>Neurocomputing >Neural network-based discrete-time command filtered adaptive position tracking control for induction motors via backstepping
【24h】

Neural network-based discrete-time command filtered adaptive position tracking control for induction motors via backstepping

机译:基于神经网络的异步电机离散时间指令滤波自适应位置跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

Considering the problems of parameter uncertainties and load disturbance appeared in induction motor drive systems, a discrete-time command filtered adaptive position tracking control method based on neural networks is proposed in this paper. First, Euler method is used to describe the discrete-time dynamic mathematical model of induction motors (IMs). Next, the neural networks technique is employed to approximate the unknown nonlinear functions. Furthermore, the "explosion of complexity" problem and noncausal problem, which emerged in traditional backstepping design, are eliminated by command filtered control technique. Simulation results prove that tracking error converges to a small neighborhood of the origin and the effectiveness of the proposed approach is illustrated. (C) 2017 Elsevier B.V. All rights reserved.
机译:针对异步电动机驱动系统中存在参数不确定性和负载扰动的问题,提出了一种基于神经网络的离散时间指令滤波自适应位置跟踪控制方法。首先,用欧拉方法描述感应电动机的离散时间动态数学模型。接下来,采用神经网络技术来近似未知的非线性函数。此外,通过命令过滤控制技术可以消除传统反推设计中出现的“复杂性爆炸”问题和非因果问题。仿真结果表明,跟踪误差收敛于原点的较小邻域,说明了该方法的有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第18期|203-210|共8页
  • 作者单位

    Qingdao Univ, Coll Automat & Elect Engn, Qingdao 266071, Shandong, Peoples R China;

    Qingdao Univ, Coll Automat & Elect Engn, Qingdao 266071, Shandong, Peoples R China;

    Qingdao Univ, Coll Automat & Elect Engn, Qingdao 266071, Shandong, Peoples R China;

    Qingdao Univ, Coll Automat & Elect Engn, Qingdao 266071, Shandong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adaptive neural control; Backstepping; Discrete-time; Induction motor; Command filtering;

    机译:自适应神经控制;反步;离散时间;感应电动机;指令滤波;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号