首页> 外文期刊>Neurocomputing >Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks
【24h】

Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks

机译:深度卷积神经网络的复合材料超声信号分类成像系统

获取原文
获取原文并翻译 | 示例

摘要

Automated ultrasonic signal classification systems are finding increasing use in many applications for the recognition of large volumes of inspection signals. Wavelet transform is a well-known signal processing technique in fault signal diagnosis system. Most of the proposed approaches have mainly used low-level handcraft features based on wavelet transform to encode the information for different defect classes. In this paper, we proposed a deep learning based framework to classify ultrasonic signals from carbon fiber reinforced polymer (CFRP) specimens with void and delamination. In our proposed algorithm, deep Convolutional Neural Networks (CNNs) are used to learn a compact and effective representation for each signal from wavelet coefficients. To yield superior results, we proposed to use a linear SVM top layer in the training process of signal classification task. The experimental results demonstrated the excellent performance of our proposed algorithm against the classical classifier with manually generated attributes. In addition, a post processing scheme is developed to interpret the classifier outputs with a C-scan imaging process and visualize the locations of defects using a 3D model representation. (C) 2017 Published by Elsevier B.V.
机译:自动化超声信号分类系统在许多应用中越来越多地用于识别大量检查信号。小波变换是故障信号诊断系统中众所周知的信号处理技术。大多数提出的方法主要使用基于小波变换的低级手工特征对不同缺陷类别的信息进行编码。在本文中,我们提出了一个基于深度学习的框架,以对来自碳纤维增强聚合物(CFRP)标本的带有空隙和分层的超声信号进行分类。在我们提出的算法中,深度卷积神经网络(CNN)用于从小波系数中学习每个信号的紧凑有效表示。为了产生更好的结果,我们建议在信号分类任务的训练过程中使用线性SVM顶层。实验结果证明了我们提出的算法对具有人工生成属性的经典分类器的出色性能。此外,开发了一种后处理方案,以使用C扫描成像过程解释分类器输出,并使用3D模型表示来可视化缺陷的位置。 (C)2017由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号