首页> 外文期刊>Neurocomputing >A secure-coding and vulnerability check system based on smart-fuzzing and exploit
【24h】

A secure-coding and vulnerability check system based on smart-fuzzing and exploit

机译:基于智能模糊和漏洞利用的安全编码和漏洞检查系统

获取原文
获取原文并翻译 | 示例

摘要

Due to recent development in the IT industry, there has been an increase in the use of software in various fields and accordingly, the frequency of usage of open source software has increased and it is being used in a wide range. However, with the increase in the use of open source software, we can be exposed to the various problems based on the weakness of open source. The weakness of heartbleed 'OpenSSL' has actually brought about much damage world-wide. In addition, as the open source software makes a lot of increases in quantity and has the property of the unprofessional and similar development, it is not proper to apply the existing secure code checking system. It means that the checking system faster than the existing secure coding checking system is required to meet the demand of the fast growing open source software market. This requires the code based analysis which is proper for not the simple static analysis but for the cloud computing. In addition, to make up for the unprofessional and similar development, the secure code checking system based on the smart fuzzing like neuro fuzzy is required. Thus, in this paper, we have suggested a smart fuzzing system made in connection to the black box and white box test which can effectively detect/distinguish the weakness of software and also suggested a way to verify whether it is exploitable and a way to automatically produce exploit through this. Also mis-detection and un-detection was minimized and a weakness analysis method based on symbols was applied to accurately detect security weakness. The suggested system can secure reliability of the open source software by deducting the reason for security weakness of open source software which is used in various industries and can prevent weaknesses earlier on in open source software made afterwards. Also, it is expected to enhance the reliability of the open source software developer and the company using it. (C) 2017 Published by Elsevier B.V.
机译:由于IT行业的最新发展,在各个领域中软件的使用已经增加,因此,开放源代码软件的使用频率已经增加并且被广泛使用。但是,随着开放源代码软件的使用增加,基于开放源代码的弱点,我们可能会遇到各种问题。令人伤心的“ OpenSSL”的弱点实际上给全世界带来了很多损失。另外,由于开源软件的数量大量增加并且具有不专业且类似的发展的特性,因此应用现有的安全代码检查系统是不合适的。这意味着需要比现有安全编码检查系统更快的检查系统,才能满足快速增长的开源软件市场的需求。这需要基于代码的分析,该分析不仅适用于简单的静态分析,还适用于云计算。另外,为了弥补不专业和类似的发展,需要基于智能模糊像神经模糊的安全代码检查系统。因此,在本文中,我们提出了一种与黑盒和白盒测试相关的智能模糊系统,该系统可以有效地检测/区分软件的弱点,并提出一种验证其是否可利用的方法以及一种自动进行检测的方法。由此产生利用。此外,将错误检测和未检测到的问题减至最少,并应用了基于符号的漏洞分析方法来准确检测安全漏洞。所提出的系统可以通过扣除在各个行业中使用的开源软件的安全性弱点的原因来确保开源软件的可靠性,并且可以在以后制作的开源软件中防止较早的弱点。而且,有望提高开源软件开发人员和使用它的公司的可靠性。 (C)2017由Elsevier B.V.发布

著录项

  • 来源
    《Neurocomputing》 |2017年第20期|23-34|共12页
  • 作者

    Kang Jungho; Park Jong Hyuk;

  • 作者单位

    Soongsil Univ, Dept Comp, 402 Informat Sci Bldg,369 Sangdo Ro, Seoul 156743, South Korea;

    Seoul Natl Univ Sci & Technol, Dept Comp Sci & Engn, Gongneung 2 Dong, Seoul 139743, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Exploit; Secure-coding; Smart-fuzzing; Symbolic; Vulnerability;

    机译:利用;安全编码;智能模糊;符号;漏洞;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号