首页> 外文期刊>Neurocomputing >Multitask fuzzy Bregman co-clustering approach for clustering data with multisource features
【24h】

Multitask fuzzy Bregman co-clustering approach for clustering data with multisource features

机译:具有多源特征的数据聚类的多任务模糊Bregman联合聚类方法

获取原文
获取原文并翻译 | 示例

摘要

In usual real-world clustering problems, the set of features extracted from the data has two problems which prevent the methods from accurate clustering. First, the features extracted from the samples provide poor information for clustering purpose. Second, the feature vector usually has a high-dimensional multi-source nature, which results in a complex cluster structure in the feature space. In this paper, we propose to use a combination of multi-task clustering and fuzzy co-clustering techniques, to overcome these two problems. In addition, the Bregman divergence is used as the concept of dissimilarity in the proposed algorithm, in order to create a general framework which enables us to use any kind of Bregman distance function, which is consistent with the data distribution and the structure of the clusters. The experimental results indicate that the proposed algorithm can overcome the two mentioned problems, and manages the complexity and weakness of the features, which results in appropriate clustering performances. (C) 2017 Elsevier B.V. All rights reserved.
机译:在通常的现实世界中的聚类问题中,从数据中提取的特征集存在两个问题,这些问题阻碍了方法的精确聚类。首先,从样本中提取的特征为聚类目的提供了较差的信息。其次,特征向量通常具有高维多源性质,这导致特征空间中的簇结构复杂。在本文中,我们建议结合使用多任务聚类和模糊共聚技术来克服这两个问题。另外,在提出的算法中,将布雷格曼散度作为不相似性的概念,以创建一个通用框架,使我们能够使用任何种类的布雷格曼距离函数,这与数据分布和聚类结构一致。实验结果表明,该算法能够克服上述两个问题,并能有效地处理特征的复杂性和弱点,从而得到合适的聚类性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号