首页> 外文期刊>Neurocomputing >A real-time FPGA implementation of a biologically inspired central pattern generator network
【24h】

A real-time FPGA implementation of a biologically inspired central pattern generator network

机译:生物学启发的中央模式生成器网络的实时FPGA实现

获取原文
获取原文并翻译 | 示例

摘要

Central pattern generators (CPGs) functioning as biological neuronal circuits are responsible for generating rhythmic patterns to control locomotion. In this paper, a biologically inspired CPG composed of two reciprocally inhibitory neurons was implemented on a reconfigurable FPGA with real-time computational speed and considerably low hardware cost. High-accuracy neural circuit implementation can be computationally expensive, especially for a high-dimensional conductance-based neuron model. Thus, we aimed to present an efficient multiplier-less hardware implementation method for the investigation of real-time hardware CPG (hCPG) networks. In order to simplify the hardware implementation, a modified neuron model without nonlinear parts was given to decrease the complexity of the original model. A simple CPG network involving two chemical coupled neurons was realized which represented the pyloric dilator (PD) and lateral pyloric (LP) neurons in the crustacean pyloric CPG. The implementation results of the hCPG network showed that rhythmic behaviors were successfully reproduced and the resource consumption was dramatically reduced by using our multiplier-less implementation method. The presented FPGA-based implementation of hCPG network with remarkable performance set a prototype for the realization of other large-scale CPG networks and could be applied in bio-inspired robotics and motion rehabilitation for locomotion control. (c) 2017 Elsevier. B.V. All rights reserved.
机译:充当生物神经元回路的中央模式发生器(CPG)负责产生有节奏的模式,以控制运动。在本文中,由两个相互抑制的神经元组成的具有生物启发性的CPG在可重配置的FPGA上实现,具有实时计算速度和相当低的硬件成本。高精度神经电路实现可能在计算上昂贵,尤其是对于基于高电导的神经元模型而言。因此,我们旨在提出一种用于研究实时硬件CPG(hCPG)网络的有效的无乘数硬件实现方法。为了简化硬件实现,给出了一个没有非线性部分的改进神经元模型,以降低原始模型的复杂性。一个涉及两个化学偶联神经元的简单CPG网络被实现,代表了甲壳类幽门CPG中的幽门扩张器(PD)和外侧幽门(LP)神经元。 hCPG网络的实现结果表明,使用我们的无乘法器实现方法可以成功地再现节奏行为,并显着减少资源消耗。所提出的基于FPGA的hCPG网络实现具有出色的性能,为实现其他大规模CPG网络奠定了原型,并可应用于生物启发的机器人技术和用于运动控制的运动康复。 (c)2017年爱思唯尔。 B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号