首页> 外文期刊>Neurocomputing >Script independent approach for multi-oriented text detection in scene image
【24h】

Script independent approach for multi-oriented text detection in scene image

机译:脚本无关的场景图像多方向文本检测方法

获取原文
获取原文并翻译 | 示例

摘要

Developing a text detection method which is invariant to scripts in natural scene images is a challenging task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT provides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k-means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the centroid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbitrary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability. (C) 2017 Elsevier B.V. All rights reserved.
机译:由于各种脚本的几何结构不同,开发一种自然场景图像中的脚本不变的文本检测方法是一项艰巨的任务。此外,自然场景图像中文本行的多方向性使问题更具挑战性。本文提出了探索环形半径变换(RRT)的多方向和多脚本环境中的文本检测。该方法基于凸包找到零部件区域,以使用RRT生成半径矩阵。事实上,由于文本的规则结构,RRT为靠近边缘的像素提供低半径值,为代表笔划宽度的像素提供恒定的半径值,并代表在背景和凸包中创建的孔的高半径值组件。我们在半径矩阵上应用k均值聚类,以将此类空间相干区域分组为单个聚类。然后,所提出的方法研究了接近于质心且远离质心的此类簇成分的半径值,以检测文本成分。此外,我们已经开发了Bangla数据集(命名为ISI-UM数据集),并提出了一种半自动系统来生成其地面真相以用于任意方向的文本检测,该系统可在将来被研究人员用于文本检测和识别。 。地面真相将被公开。在ISI-UM数据和ICDAR 2013场景,SVT和MSRA数据等其他标准数据集上的实验结果表明,该方法在多语言和多方向文本检测能力方面优于现有方法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号