首页> 外文期刊>Neurocomputing >Multiple-shot person re-identification via fair set-collaboration metric learning
【24h】

Multiple-shot person re-identification via fair set-collaboration metric learning

机译:通过公平的集合协作度量学习,对多次射击的人进行重新识别

获取原文
获取原文并翻译 | 示例

摘要

As an issue that attracts increasing interests in both academia and industry, multiple-shot person re identification has shown promising results but suffers from real-scenario complexities and feature crafting heuristics. To tackle the problems of set-level data variation and sparseness during re identification, this paper proposes a novel metric learning method, named "Fair Set-Collaboration Metric Learning", motivated by utilizing the opportunities whilst overcoming the challenges from the set of multiple instances. This method optimizes a new set-collaboration dissimilarity measure, which introduces the fairness principle into the collaborative representation based set to sets distance, in the set based metric learning framework. Experiments on widely-used benchmark datasets have demonstrated the advantages of this method in terms of effectiveness and robustness. (C) 2017 Elsevier B.V. All rights reserved.
机译:作为一个引起学术界和业界越来越多兴趣的问题,多次重识别人机已经显示出令人鼓舞的结果,但是却遇到了实际场景的复杂性和功能精心设计的启发式方法。为了解决重新识别过程中集合级数据变化和稀疏的问题,本文提出了一种新颖的度量学习方法,称为“公平集合协作度量学习”,其目的是利用机遇,同时克服来自多个实例集合的挑战。该方法优化了一种新的集合-协作不相似性度量,该度量在基于集合的度量学习框架中将公平性原理引入了基于协作表示的集合中,以设置距离。在广泛使用的基准数据集上进行的实验证明了该方法在有效性和鲁棒性方面的优势。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号