首页> 外文期刊>Neurocomputing >Data-driven prognostics using a combination of constrained K-means clustering, fuzzy modeling and LOF-based score
【24h】

Data-driven prognostics using a combination of constrained K-means clustering, fuzzy modeling and LOF-based score

机译:结合约束K均值聚类,模糊建模和基于LOF的得分的数据驱动的预测

获取原文
获取原文并翻译 | 示例

摘要

Today, failure modes characterization and early detection is a key issue in complex assets. This is due to the negative impact of corrective operations and the conservative strategies usually put in practice, focused on preventive maintenance. In this paper anomaly detection issue is addressed in new monitoring sensor data by characterizing and modeling operational behaviors. The learning framework is performed on the basis of a machine learning approach that combines constrained K-means clustering for outlier detection and fuzzy modeling of distances to normality. A final score is also calculated over time, considering the membership degree to resulting fuzzy sets and a local outlier factor. Proposed solution is deployed in a CBM+ platform for online monitoring of the assets. In order to show the validity of the approach, experiments have been conducted on real operational faults in an auxiliary marine diesel engine. Experimental results show a fully comprehensive yet accurate prognostics approach, improving detection capabilities and knowledge management. The performance achieved is quite high (precision, sensitivity and specificity above 93% and K = 0.93), even more so given that a very small percentage of real faults are present in data. (C) 2017 Elsevier B.V. All rights reserved.
机译:如今,故障模式的表征和早期检测已成为复杂资产中的关键问题。这是由于纠正操作的负面影响以及通常在实践中以预防性维护为重点的保守策略所致。在本文中,通过表征和建模操作行为,在新的监视传感器数据中解决了异常检测问题。该学习框架是在机器学习方法的基础上执行的,该方法结合了约束K-means聚类进行离群值检测和距离到正常距离的模糊建模。考虑到生成的模糊集的隶属度和局部离群因素,最终分数也会随时间计算。拟议的解决方案部署在CBM +平台中,用于资产的在线监控。为了显示该方法的有效性,已经对辅助船用柴油机的实际运行故障进行了实验。实验结果显示了一种全面而准确的预测方法,可提高检测能力和知识管理。达到的性能相当高(精度,灵敏度和特异度高于93%,K = 0.93),如果数据中只存在很小比例的实际故障,则性能更高。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号