首页> 外文期刊>Neurocomputing >Variational Relevant Sample-Feature Machine: A fully Bayesian approach for embedded feature selection
【24h】

Variational Relevant Sample-Feature Machine: A fully Bayesian approach for embedded feature selection

机译:变体相关样本特征机:用于嵌入特征选择的完全贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a Bayesian learning approach for embedded feature selection. This approach employs a fully Bayesian framework to achieve a model which is sparse in both sample and feature domains. We introduce a novel multi-step algorithm based on Variational Approximation to efficiently compute all model parameters in order to optimize the maximum a posteriori probability (MAP) measure. Experiments on both synthetic and real datasets verify that the proposed method is successful in feature selection while achieving high accuracy in both regression and classification tasks. Compared to the existing methods, especially its non-fully Bayesian counterpart, the proposed algorithm results in much higher accuracies when the size of learning data is small. Moreover, the proposed method is more reliable (evident by less variance in accuracy) than other competing algorithms. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文提出了一种用于嵌入式特征选择的贝叶斯学习方法。这种方法采用了完全的贝叶斯框架来实现一个在样本域和特征域都很少的模型。我们介绍了一种基于变分近似的新颖多步算法,可以有效地计算所有模型参数,以优化最大后验概率(MAP)度量。在合成数据集和真实数据集上的实验均证明,该方法在特征选择方面是成功的,同时在回归和分类任务中均实现了高精度。与现有方法相比,特别是与非完全贝叶斯方法相比,当学习数据量较小时,所提出的算法具有更高的准确性。此外,所提出的方法比其他竞争算法更可靠(通过较小的精度差异证明)。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号