首页> 外文期刊>Neurocomputing >PSO-based method for SVM classification on skewed data sets
【24h】

PSO-based method for SVM classification on skewed data sets

机译:基于PSO的偏斜数据集SVM分类方法

获取原文
获取原文并翻译 | 示例

摘要

Over the last years, Support Vector Machines (SVMs) have become a successful approach in classification problems. However, the performance of SVMs is affected harshly by skewed data sets. An SVM learns a biased model that affects the performance of the classifier. Furthermore, SVMs are typically Unsuccessful on data sets where the imbalanced ratio is very large. Lately, several techniques have been used to tackle this disadvantage by generating artificial instances. Artificial data instances attempt to add information to the minority class. However, the new instances could introduce noise and decrease the performance of the classifier. In this research, an alternative procedure is suggested, the algorithm finds systematically new instances, improving the performance of SVMs on skewed data sets. The proposed method starts obtaining the support vectors (SVs) from the skewed data set. These initial SVs are used to generate new instances and the PSO algorithm is used to evolve the artificial instances, eliminating noise instances. This research combines the best of optimization and classification techniques. To show the ability of the proposed method to improve the performance of SVMs on skewed data sets, we compare the performance of our method against some classical methods and show that our algorithm outperforms all of them on several data sets.
机译:近年来,支持向量机(SVM)已成为解决分类问题的成功方法。但是,偏斜的数据集会严重影响SVM的性能。 SVM学习有偏差的模型,该模型会影响分类器的性能。此外,在不平衡率非常大的数据集上,SVM通常是不成功的。最近,已使用几种技术通过生成人工实例来解决此缺点。人工数据实例尝试向少数类添加信息。但是,新实例可能会引入噪声并降低分类器的性能。在这项研究中,提出了一种替代方法,该算法系统地找到了新实例,从而提高了偏斜数据集上SVM的性能。所提出的方法开始从偏斜的数据集中获得支持向量(SV)。这些初始SV用于生成新实例,而PSO算法用于演化人工实例,从而消除了噪声实例。这项研究结合了最佳的优化和分类技术。为了显示所提出的方法改善偏斜数据集上的SVM性能的能力,我们将本方法的性能与一些经典方法进行了比较,并表明我们的算法在多个数据集上均优于所有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号