首页> 外文期刊>Neurocomputing >Novel iterative approach using generative and discriminative models for classification with missing features
【24h】

Novel iterative approach using generative and discriminative models for classification with missing features

机译:使用生成模型和判别模型的新颖迭代方法,用于缺失特征的分类

获取原文
获取原文并翻译 | 示例

摘要

Missing feature is a common problem in real-world data classification. Therefore, a robust classification method is required when classifying data with missing features. In this study, we propose an iterative algorithm composed of a generative model that works in conjunction with a discriminative model in a cycle. The Gaussian mixture model (GMM) and the multilayer perceptron (MLP) (or the support vector machine (SVM)) present the generative and discriminative parts of the proposed algorithm, respectively. This study conducted two experiments using UC Irvine datasets. One is to show the superiority of the proposed method through its higher classification accuracy compared with previous classification methods including with respect to marginalization, mean imputation, conditional mean imputation, and zero-mean imputation. The other is to compare classification accuracy of the proposed method with that of conventional the state-of-the-art GMM-based approaches to the missing data problem.
机译:缺少功能是现实世界中数据分类中的常见问题。因此,在对具有缺失特征的数据进行分类时,需要一种可靠的分类方法。在这项研究中,我们提出了一种迭代算法,该算法由一个生成模型组成,该模型与一个判别模型一起循环工作。高斯混合模型(GMM)和多层感知器(MLP)(或支持向量机(SVM))分别提出了该算法的生成部分和判别部分。这项研究使用UC Irvine数据集进行了两个实验。一种是通过与以前的分类方法(包括边际化,均值插补,条件均值插补和零均值插补)相比,较之以前的分类方法来显示所提方法的优越性。另一个是将提出的方法的分类精度与传统的基于GMM的最新方法对丢失数据问题的分类精度进行比较。

著录项

  • 来源
    《Neurocomputing》 |2017年第15期|23-30|共8页
  • 作者单位

    Kyungpook Natl Univ, Sch Elect Engn, 1370 Sankyuk Dong, Taegu 702701, South Korea;

    Kyungpook Natl Univ, Sch Elect Engn, 1370 Sankyuk Dong, Taegu 702701, South Korea;

    Kyungpook Natl Univ, Sch Elect Engn, 1370 Sankyuk Dong, Taegu 702701, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Missing data imputation; Generative and discriminative model;

    机译:缺失的数据归因;生成和判别模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号