首页> 外文期刊>Neurocomputing >Mean-square analysis of the gradient projection sparse recovery algorithm based on non-uniform norm
【24h】

Mean-square analysis of the gradient projection sparse recovery algorithm based on non-uniform norm

机译:基于非均匀范数的梯度投影稀疏恢复算法的均方分析

获取原文
获取原文并翻译 | 示例

摘要

With the previously proposed non-uniform norm called IN-norm, which consists of a sequence of I-1-norm or I-0-norm elements according to relative magnitude, a novel IN-norm sparse recovery algorithm can be derived by projecting the gradient descent solution to the reconstruction feasible set. In order to gain analytical insights into the performance of this algorithm, in this letter we analyze the steady state mean square performance of the gradient projection l(N)-norm sparse recovery algorithm in terms of different sparsity, as well as additive noise. Numerical simulations are provided to verify the theoretical results.
机译:借助先前提出的称为IN-范数的非均匀范数,该范数由I-1-范数或I-0-范数元素的序列根据相对幅度组成,可以通过投影I-范数稀疏恢复算法来推导重建可行集的梯度下降解决方案。为了获得对该算法性能的分析见解,在本文中,我们根据不同的稀疏性和加性噪声来分析梯度投影l(N)-范数稀疏恢复算法的稳态均方性能。提供数值模拟以验证理论结果。

著录项

  • 来源
    《Neurocomputing》 |2017年第5期|103-106|共4页
  • 作者

    Wu F. Y.; Tong F.;

  • 作者单位

    Xiamen Univ, Key Lab Underwater Acoust Commun & Marine Informa, Xiamen, Peoples R China;

    Xiamen Univ, Key Lab Underwater Acoust Commun & Marine Informa, Xiamen, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-uniform norm; Sparse recovery; Compressed sensing; Gradient projection;

    机译:规范不统一稀疏恢复压缩感知梯度投影;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号