首页> 外文期刊>Neurocomputing >Looseness diagnosis method for connecting bolt of fan foundation based on sensitive mixed-domain features of excitation-response and manifold learning
【24h】

Looseness diagnosis method for connecting bolt of fan foundation based on sensitive mixed-domain features of excitation-response and manifold learning

机译:基于激励响应和流形学习的敏感混合域特征的风机基础连接螺栓松动诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Looseness diagnosis for connecting bolt of fan foundation is an important task for ensuring proper operation of fan and safe traffic. Aiming at solving the key problems of bolt looseness diagnosis including looseness feature extraction, looseness feature set construction, non-sensitive or poor sensitive feature interference and feature set nonlinear dimension reduction, a looseness diagnosis method for connecting bolt of fan foundation based on sensitive mixed-domain features of excitation response and manifold learning is proposed. Firstly, the response signal is collected by applying a pulse excitation signal to the fan, and the frequency response function is calculated. The looseness of fan foundation is characterized by response signal and the frequency response function. Then, the looseness mixed-domain feature set is constructed through fusion time-domain feature and frequency-domain feature of response signal and frequency response function. Secondly, the looseness sensitivity index is calculated based on scatter matrix for sensitive feature selection to avoid the interference of non-sensitive and poor sensitive feature, thus the looseness sensitive feature set is constructed. Moreover, orthogonal neighborhood preserving embedding (ONPE); an effective manifold learning algorithm with nonlinear dimensionality reduction capability, is applied to compress the high-dimensional looseness sensitive feature set into the low-dimensional one. Finally, the low-dimensional looseness sensitive feature set is imported into weight K nearest neighbor classifier (WKNNC) as input to recognize different loosening of connecting bolt, and the stability of recognition accuracy rate is ensured. The feasibility and performance of the proposed method were proved by successful looseness diagnosis application on a tunnel fan foundation's connecting bolt.
机译:风扇底座连接螺栓的松动诊断是确保风扇正常运行和安全交通的重要任务。为了解决螺栓松动诊断的关键问题,包括松动特征提取,松动特征集构造,非敏感或较弱的敏感特征干扰以及特征集非线性降维,一种基于敏感混合动力的风机基础螺栓连接松动诊断方法。提出了励磁响应和流形学习的领域特征。首先,通过向风扇施加脉冲激励信号来收集响应信号,并计算频率响应函数。风扇基础松动的特点是响应信号和频率响应函数。然后,通过融合响应信号的时域特征和频域特征以及频率响应函数,构造了松散混合域特征集。其次,基于散度矩阵计算松散敏感度指标,以选择敏感特征,避免非敏感和较差敏感特征的干扰,从而构建了松散敏感特征集。此外,正交邻域保留嵌入(ONPE);提出了一种有效的具有非线性降维能力的流形学习算法,将高维疏松敏感特征集压缩为低维。最后,将低维松动敏感特征集输入到权重K最近邻分类器(WKNNC)作为输入,以识别连接螺栓的不同松动,确保了识别准确率的稳定性。通过在隧道风机基础连接螺栓松动诊断中的成功应用,证明了该方法的可行性和有效性。

著录项

  • 来源
    《Neurocomputing》 |2017年第5期|376-388|共13页
  • 作者单位

    Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing 400074, Peoples R China|Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China;

    Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing 400074, Peoples R China;

    Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing 400074, Peoples R China|Chongqing Radio & TV Univ, Chongqing 400052, Peoples R China;

    Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China;

    Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing 400074, Peoples R China;

    Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing 400074, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Looseness diagnosis; Connecting bolt; Excitation-response; Sensitive feature; Manifold learning;

    机译:松动诊断;连接螺栓;激励响应;敏感特征;流形学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号