首页> 外文期刊>Neurocomputing >An enhanced trust prediction strategy for online social networks using probabilistic reputation features
【24h】

An enhanced trust prediction strategy for online social networks using probabilistic reputation features

机译:使用概率信誉功能的在线社交网络的增强的信任预测策略

获取原文
获取原文并翻译 | 示例

摘要

Online Social networks have gained much prominence in the recent years such that it has become an unavoidable means of daily communication. The element of trust in social networks has been studied ever since the inception of online social networks. Trust in online social networks is extremely fragile in nature due to the virtual connections between users in the network. The level of trustworthiness of each user in a social network varies and is usually computed using reputation level of the users. This paper focuses on identifying the features that determine the trust of a user in online social networks using benchmark datasets. We propose a new probabilistic reputation feature model that is better than the raw reputation features. The enhanced trust prediction framework has been tested and validated on three benchmark datasets namely Wikipedia election dataset, Epinions dataset and Slashdot dataset. The proposed probabilistic feature enhances the overall accuracy, F1 score, and area under the ROC for the classifier results significantly. The results have been compared with other state of the art techniques and are found to be efficient.
机译:近年来,在线社交网络获得了极大的关注,因此它已成为日常交流的不可避免的手段。自从建立在线社交网络以来,就一直在研究社交网络中的信任元素。由于网络中用户之间的虚拟连接,在线社交网络中的信任本质上极为脆弱。社交网络中每个用户的可信度级别各不相同,通常使用用户的信誉级别来计算。本文着重于确定使用基准数据集确定在线社交网络中用户信任度的功能。我们提出了一种新的概率信誉特征模型,该模型优于原始信誉特征。增强的信任预测框架已在Wikipedia选举数据集,Epinions数据集和Slashdot数据集这三个基准数据集上进行了测试和验证。提议的概率特征可显着提高分类器结果的总体准确性,F1得分和ROC下面积。该结果已与其他现有技术进行了比较,并被认为是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号