首页> 外文期刊>Neurocomputing >Deep convolutional networks with residual learning for accurate spectral-spatial denoising
【24h】

Deep convolutional networks with residual learning for accurate spectral-spatial denoising

机译:具有残差学习功能的深度卷积网络可实现精确的频谱空间降噪

获取原文
获取原文并翻译 | 示例

摘要

Although hyperspectral image (HSI) denoising has been studied for decades, preserving spectral data efficiently remains an open problem. In this paper, we present a powerful and trainable spectral difference mapping method based on convolutional networks with residual learning in an end-to-end fashion for preserving spectral profile while removing noise in HSIs. Our approach, called SSDRN (spectral-spatial denoising by residual network), blends a spectral difference mapping strategy with a denoised key band for an efficient complete set of HSI denoising. The key band is selected based on a principal component transformation matrix. Experiments have been conducted on both ground based HSIs and airborne data. Comparative analyses validate that the proposed method presents superior denoising performance as it preserves spectral information better, and requires less computational time. (C) 2018 Elsevier B.V. All rights reserved.
机译:尽管高光谱图像(HSI)降噪已经研究了数十年,但有效保存光谱数据仍然是一个悬而未决的问题。在本文中,我们提出了一种基于卷积网络的强大且可训练的频谱差异映射方法,该方法以端到端的方式以残差学习的形式保留了端到端的频谱,同时消除了HSI中的噪声。我们的方法称为SSDRN(通过残差网络进行频谱空间去噪),将频谱差异映射策略与去噪的关键频带混合在一起,以实现高效的完整HSI去噪。基于主成分变换矩阵来选​​择密钥带。已经对基于地面的HSI和机载数据进行了实验。比较分析证明,该方法具有更好的保留频谱信息,并且需要较少的计算时间,因此具有出色的降噪性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第27期|372-381|共10页
  • 作者单位

    Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Shaanxi, Peoples R China;

    Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Shaanxi, Peoples R China;

    Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Residual learning; Hyperspectral image; Denoising; Spectral difference; Band selection;

    机译:残差学习高光谱图像去噪光谱差异波段选择;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号