首页> 外文期刊>Neurocomputing >Graph cut based automatic aorta segmentation with an adaptive smoothness constraint in 3D abdominal CT images
【24h】

Graph cut based automatic aorta segmentation with an adaptive smoothness constraint in 3D abdominal CT images

机译:基于图割的3D腹部CT图像中具有自适应平滑度约束的自动主动脉分割

获取原文
获取原文并翻译 | 示例

摘要

Aorta segmentation is clinically important as it is a necessary step towards accurate assessments of some aorta disease. In the paper, we present a graph cut based method for automated aorta segmentation. In our method, a discriminative integrated feature (DIF) and a novel adaptive smoothness constraint are designed. DIF consists of low level features and other discriminative features including eigenvalues of Hessian and local self-similarity descriptor. DIF and random forests (RFs) are used to generate the probability maps. The probability maps containing learning information from RFs are more accurate than traditional probability maps generated based on intensities directly. The negative logarithm of the probability maps serves as the penalty term in a cost function. Additionally, a novel adaptive smoothness constraint is imposed to ensure a smooth solution. The adaptive smoothness term is constructed by DIFs and data-driven weights. Two kinds of data-driven weights are developed based on the idea that the discontinuity of two neighboring voxels with different labels should be distinct with two neighboring voxels with the same label. The final segmentation is obtained by optimizing the cost function using graph cuts. We evaluate the proposed method through challenging task of abdominal aorta segmentation in 3D CT images. With average dice metric (DM) 0.9690 on the test set, our experimental results demonstrate that our method achieves higher aorta segmentation accuracy than existing methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:主动脉分割在临床上很重要,因为它是准确评估某些主动脉疾病的必要步骤。在本文中,我们提出了一种基于图割的自动主动脉分割方法。在我们的方法中,设计了判别式综合特征(DIF)和新颖的自适应平滑度约束。 DIF包含低级特征和其他区分性特征,包括Hessian的特征值和局部自相似性描述符。 DIF和随机森林(RF)用于生成概率图。包含来自RF的学习信息的概率图比直接基于强度生成的传统概率图更准确。概率图的负对数用作成本函数中的惩罚项。另外,施加了新的自适应平滑度约束以确保平滑的解决方案。自适应平滑度项由DIF和数据驱动的权重构成。基于以下想法开发了两种数据驱动的权重:具有相同标签的两个相邻体素的不连续性应与具有相同标签的两个相邻体素的不连续性不同。通过使用图割优化成本函数来获得最终分割。我们通过在3D CT图像中进行腹主动脉分割的挑战性任务来评估所提出的方法。在测试集上,平均骰子度数(DM)> 0.9690时,我们的实验结果表明,与现有方法相比,我们的方法可实现更高的主动脉分割精度。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第8期|46-58|共13页
  • 作者单位

    Shandong Univ, Coll Comp Sci & Technol, Jinan, Shandong, Peoples R China;

    Shandong Normal Univ, Sch Informat Sci & Engn, Inst Life Sci, Key Lab Intelligent Informat Proc, Jinan, Shandong, Peoples R China;

    Shandong Univ, Coll Comp Sci & Technol, Jinan, Shandong, Peoples R China;

    Shandong Univ Finance & Econ, Coll Comp Sci & Technol, Jinan, Shandong, Peoples R China;

    Shandong Prov Hosp, Jinan, Shandong, Peoples R China;

    Shandong Univ, Coll Software Engn, Jinan, Shandong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Automatic segmentation; Aorta; Adaptive smoothness constraint; Graph cuts; Random forests; Data-driven weights;

    机译:自动分割;主动脉;自适应平滑约束;图割;随机森林;数据驱动权重;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号