首页> 外文期刊>Neurocomputing >Evolutionary multi-objective optimization based ensemble autoencoders for image outlier detection
【24h】

Evolutionary multi-objective optimization based ensemble autoencoders for image outlier detection

机译:基于进化多目标优化的集成自动编码器,用于图像离群值检测

获取原文
获取原文并翻译 | 示例

摘要

Image outlier detection has been an important research issue for many computer vision tasks. However, most existing outlier detection methods fail in the high-dimensional image datasets. In order to address this problem, we propose a novel image outlier detection method by combining autoencoder with Adaboost (ADAE). By ensembling many weak autoencoders, our method can better capture the statistical correlations among the features of normal data than the single autoencoder. Therefore, the proposed ADAE is able to determine the outliers efficiently. In order to reduce the many parameters in ADAE, we introduce the Sparse Group Lasso (SGL) constraint into the learning objective of ADAE. We combine Adagrad with Proximal Gradient Descent to optimize this additional learning objective. We also propose the multi-objective evolutionary algorithm to determine the best penalty factors of SGL. By evaluating on several famous image datasets, the detection results testify to the outstanding outlier detection performance of ADAE. The evaluation results also show SGL can make the detection model more compact while maintaining the similar detection performance. (C) 2018 Elsevier B.V. All rights reserved.
机译:图像离群值检测已成为许多计算机视觉任务的重要研究问题。但是,大多数现有的异常值检测方法在高维图像数据集中均失败。为了解决这个问题,我们提出了一种将自动编码器与Adaboost(ADAE)相结合的新颖的图像离群值检测方法。通过集成许多弱自动编码器,我们的方法比单个自动编码器可以更好地捕获正常数据特征之间的统计相关性。因此,提出的ADAE能够有效地确定离群值。为了减少ADAE中的许多参数,我们将稀疏组套索(SGL)约束引入了ADAE的学习目标。我们将Adagrad与近端梯度下降相结合,以优化此额外的学习目标。我们还提出了多目标进化算法来确定SGL的最佳惩罚因子。通过对几个著名的图像数据集进行评估,检测结果证明了ADAE出色的异常检测性能。评估结果还表明,SGL可以使检测模型更紧凑,同时保持相似的检测性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号