首页> 外文期刊>Neurocomputing >Expression-invariant face recognition using a biological disparity energy model
【24h】

Expression-invariant face recognition using a biological disparity energy model

机译:使用生物视差能量模型的表情不变的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Biologically-compatible methods are not commonly used for face recognition. Complex computational approaches are preferred and dominate the state of the art. However, we know that the human brain is very efficient at processing faces, without explicitly depending on advanced mathematics. In this paper we focus on evaluating the performance of an expression-invariant face recognition system, which is based on the most widely-accepted biological model of stereo vision: the Disparity Energy Model (DEM), which has been shown to deliver precise but inaccurate results. We show that the DEM can provide 3D disparity maps which are suitable for both identity recognition and verification, even coping with a wide range of facial expressions. We test disparity information, both alone and in combination with luminance data, achieving state-of-the-art results. We also compare DEM results with those obtained by precise and accurate laser range maps, concluding that the differences in performance are very small. (C) 2018 Elsevier B.V. All rights reserved.
机译:生物相容性方法通常不用于面部识别。复杂的计算方法是首选,并在现有技术中占主导地位。但是,我们知道人脑在处理人脸方面非常有效,而无需明确地依赖于高级数学。在本文中,我们专注于评估表情不变的面部识别系统的性能,该系统基于最广泛接受的立体视觉生物学模型:视差能量模型(DEM),该模型已显示出精确但不准确的特征结果。我们证明DEM可以提供适合于身份识别和验证的3D视差图,甚至可以应付各种面部表情。我们单独或与亮度数据结合测试视差信息,从而获得最新的结果。我们还将DEM结果与通过精确的激光测距图获得的结果进行比较,得出结论,性能差异很小。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号