首页> 外文期刊>Neurocomputing >An effective pattern-based Bayesian classifier for evolving data stream
【24h】

An effective pattern-based Bayesian classifier for evolving data stream

机译:基于有效模式的贝叶斯分类器,用于数据流的演进

获取原文
获取原文并翻译 | 示例

摘要

One of the hot topics in graph-based machine learning is to build Bayesian classifier from large-scale dataset. An advanced approach to Bayesian classification is based on exploited patterns. However, traditional pattern-based Bayesian classifiers cannot adapt to the evolving data stream environment. For that, an effective Pattern-based Bayesian classifier for Data Stream (PBDS) is proposed. First, a data-driven lazy learning strategy is employed to discover local frequent patterns for each test record. Furthermore, we propose a summary data structure for compact representation of data, and to find patterns more efficiently for each class. Greedy search and minimum description length combined with Bayesian network are applied to evaluating extracted patterns. Experimental studies on real-world and synthetic data streams show that PBDS outperforms most state-of-the-art data stream classifiers. (C) 2018 Elsevier B.V. All rights reserved.
机译:基于图的机器学习中的热门话题之一是从大规模数据集中构建贝叶斯分类器。贝叶斯分类的一种高级方法是基于被利用的模式。但是,传统的基于模式的贝叶斯分类器无法适应不断发展的数据流环境。为此,提出了一种有效的基于模式的数据流贝叶斯分类器(PBDS)。首先,采用数据驱动的惰性学习策略来发现每个测试记录的本地频繁模式。此外,我们提出了一种汇总数据结构,用于数据的紧凑表示,并为每个类更有效地找到模式。贪婪搜索和最小描述长度结合贝叶斯网络被应用于评估提取的模式。对现实世界和合成数据流的实验研究表明,PBDS优于大多数最新的数据流分类器。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第21期|17-28|共12页
  • 作者单位

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China;

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China;

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China;

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China;

    Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data stream; Frequent pattern; Bayesian; Lazy learning;

    机译:数据流频繁模式贝叶斯懒学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号