首页> 外文期刊>Neurocomputing >CISRDCNN: Super-resolution of compressed images using deep convolutional neural networks
【24h】

CISRDCNN: Super-resolution of compressed images using deep convolutional neural networks

机译:CISRDCNN:使用深度卷积神经网络的压缩图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

In recent years, many studies have been conducted on image super-resolution (SR). However, to the best of our knowledge, few SR methods are concerned with compressed images. The SR of compressed images is a challenging task due to the complicated compression artifacts that many images suffer from in practice. The intuitive solution for this difficult task is to decouple it into two sequential but independent subproblems, the compression artifacts reduction (CAR) and the SR. Nevertheless, some useful details may be removed in the CAR stage, which is contrary to the goal of SR and makes the SR stage more challenging. In this paper, an end-to-end trainable deep convolutional neural network is designed to perform SR on compressed images, which jointly reduces compression artifacts and improves image resolution. The designed network is named CISRDCNN. Experiments on JPEG images (we take the JPEG as an example in this paper) demonstrate that the proposed CISRDCNN yields state-of-the-art SR performance on commonly used test images and imagesets. The results of CISRDCNN on real low-quality web images are also very impressive with obvious quality improvements. Further, we explore the application of the proposed SR method in low bit-rate image coding, leading to better rate-distortion performance than JPEG. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,已经对图像超分辨率(SR)进行了许多研究。但是,据我们所知,很少有SR方法与压缩图像有关。由于许多图像在实践中会遇到复杂的压缩伪像,因此压缩图像的SR是一项具有挑战性的任务。解决此难题的直观方法是将其分解为两个连续但独立的子问题,即压缩伪影减少(CAR)和SR。但是,在CAR阶段可能会删除一些有用的细节,这与SR的目标背道而驰,并使SR阶段更具挑战性。本文设计了一种端到端的可训练深度卷积神经网络来对压缩图像执行SR,从而共同减少了压缩伪像并提高了图像分辨率。设计的网络名为CISRDCNN。在JPEG图像上进行的实验(我们以JPEG为例)表明,所提出的CISRDCNN在常用的测试图像和图像集上具有最新的SR性能。 CISRDCNN在真实的低质量Web图像上的结果也令人印象深刻,并且质量得到了明显改善。此外,我们探索了所提出的SR方法在低比特率图像编码中的应用,从而获得了比JPEG更好的率失真性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第12期|204-219|共16页
  • 作者单位

    Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Sichuan, Peoples R China;

    Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Sichuan, Peoples R China;

    Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Sichuan, Peoples R China;

    Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Sichuan, Peoples R China;

    Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Sichuan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Super-resolution; Compressed images; Deep convolutional neural networks; Low bit-rate coding; JPEG;

    机译:超分辨率;压缩图像;深度卷积神经网络;低比特率编码;JPEG;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号