首页> 外文期刊>Neurocomputing >A dynamic trust based two-layer neighbor selection scheme towards online recommender systems
【24h】

A dynamic trust based two-layer neighbor selection scheme towards online recommender systems

机译:一种面向在线推荐系统的基于动态信任的两层邻居选择方案

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering has become one of the most widely used methods for providing recommendations in various online environments. Its recommendation accuracy highly relies on the selection of appropriate neighbors for the target user/item. However, existing neighbor selection schemes have some inevitable inadequacies, such as neglecting users' capability of providing trustworthy recommendations, and ignoring users' preference changes. Such inadequacies may lead to drop of the recommendation accuracy, especially when recommender systems are facing the data sparseness issue caused by the dramatic increase of users and items. To improve the recommendation accuracy, we propose a novel two-layer neighbor selection scheme that takes users' capability and trustworthiness into account. In particular, the proposed scheme consists of two modules: (1) capability module that selects the first layer neighbors based on their capability of providing recommendations and (2) a trust module that further identifies the second layer neighbors based on their dynamic trustworthiness on recommendations. The performance of the proposed scheme is validated through experiments on real user datasets. Compared to three existing neighbor selection schemes, the proposed scheme consistently achieves the highest recommendation accuracy across data sets with different degrees of sparseness. (C) 2018 Elsevier B.V. All rights reserved.
机译:协作过滤已成为在各种在线环境中提供建议的最广泛使用的方法之一。其推荐准确性高度依赖于为目标用户/项目选择合适的邻居。但是,现有的邻居选择方案存在一些不可避免的不足之处,例如忽略了用户提供可信赖推荐的能力,而忽略了用户的偏好变化。这种不足可能会导致推荐准确性下降,尤其是当推荐系统面临着由用户和项目急剧增加引起的数据稀疏问题时。为了提高推荐的准确性,我们提出了一种新颖的两层邻居选择方案,该方案考虑了用户的能力和可信度。特别地,所提出的方案包括两个模块:(1)能力模块,该功能模块基于其提供推荐的能力选择第一层邻居;以及(2)信任模块,该信任模块基于其对推荐的动态可信度进一步识别第二层邻居。通过对真实用户数据集的实验验证了所提方案的性能。与三个现有的邻居选择方案相比,所提出的方案在具有不同稀疏度的数据集上始终获得最高的推荐精度。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号