首页> 外文期刊>Neurocomputing >A new Mumford-Shah total variation minimization based model for sparse-view x-ray computed tomography image reconstruction
【24h】

A new Mumford-Shah total variation minimization based model for sparse-view x-ray computed tomography image reconstruction

机译:基于新的Mumford-Shah总变异最小化的稀疏X射线计算机断层摄影图像重建模型

获取原文
获取原文并翻译 | 示例

摘要

Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction has been widely explored to reduce radiation dose. However, owing to the piecewise constant assumption, CT images reconstructed by TV minimization-based algorithms often suffer from image edge over-smoothness. To address this issue, an improved sparse-view CT reconstruction algorithm is proposed in this work by incorporating a Mumford-Shah total variation (MSTV) model into the penalized weighted least-squares (PWLS) scheme, termed as "PWLS-MSTV". The MSTV model is derived by coupling TV minimization and Mumford-Shah segmentation, to achieve good edge-preserving performance during image denoising. To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quantitative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in terms of noise reduction, contrast-to-ratio measure and edge-preservation. (C) 2018 Elsevier B.V. All rights reserved.
机译:广泛研究了稀疏X射线计算机断层扫描(CT)重建的总变化(TV)最小化,以减少辐射剂量。然而,由于分段恒定的假设,通过基于电视最小化的算法重建的CT图像经常遭受图像边缘过平滑的困扰。为了解决这个问题,在这项工作中提出了一种改进的稀疏视图CT重建算法,该算法通过将Mumford-Shah总变异(MSTV)模型合并到惩罚加权最小二乘(PWLS)方案中,称为“ PWLS-MSTV”。 MSTV模型是通过将电视最小化和Mumford-Shah分割相结合而得出的,以在图像去噪期间实现良好的边缘保留性能。为了评估当前PWLS-MSTV算法的性能,使用数字XCAT体模和物理体模进行了定性和定量研究。实验结果表明,与现有算法相比,现有的PWLS-MSTV算法在降噪,对比度比测量和边缘保留方面都有明显的提高。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第12期|74-81|共8页
  • 作者单位

    Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China;

    Southern Med Univ, Dept Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China;

    Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China;

    Southern Med Univ, Dept Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China;

    SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11790 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer tomography; Mumford-Shah total variation; Sparse-view; Image reconstruction;

    机译:计算机体层摄影术;Mumford-Shah总变化;稀疏视图;图像重建;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号