首页> 外文期刊>Neurocomputing >Efficient and effective strategies for cross-corpus acoustic emotion recognition
【24h】

Efficient and effective strategies for cross-corpus acoustic emotion recognition

机译:跨主体声学情感识别的有效策略

获取原文
获取原文并翻译 | 示例

摘要

An important research direction in speech technology is robust cross-corpus and cross-language emotion recognition. In this paper, we propose computationally efficient and performance effective feature normalization strategies for the challenging task of cross-corpus acoustic emotion recognition. We particularly deploy a cascaded normalization approach, combining linear speaker level, nonlinear value level and feature vector level normalization to minimize speaker-and corpus-related effects as well as to maximize class separability with linear kernel classifiers. We use extreme learning machine classifiers on five corpora representing five languages from different families, namely Danish, English, German, Russian and Turkish. Using a standard set of suprasegmental features, the proposed normalization strategies show superior performance compared to benchmark normalization approaches commonly used in the literature. (C) 2017 Elsevier B.V. All rights reserved.
机译:语音技术的重要研究方向是强大的跨语料库和跨语言情感识别。在本文中,我们提出了计算效率高和性能有效的特征归一化策略,以解决跨身体声学情感识别的挑战性任务。我们特别部署了级联归一化方法,将线性说话者级别,非线性值级别和特征向量级别归一化相结合,以最大程度地减少与说话者和语料库相关的影响,并最大程度地利用线性核分类器实现类的可分离性。我们在五个语料库上使用极限学习机分类器,它们代表来自不同家族的五种语言,即丹麦语,英语,德语,俄语和土耳其语。使用标准的超分割特征集,与文献中常用的基准归一化方法相比,所提出的归一化策略显示出优异的性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号