首页> 外文期刊>Neurocomputing >Holistic adjustable delay interval method-based stability and generalized dissipativity analysis for delayed recurrent neural networks
【24h】

Holistic adjustable delay interval method-based stability and generalized dissipativity analysis for delayed recurrent neural networks

机译:基于整体可调延迟区间法的时滞递归神经网络稳定性和广义耗散分析

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the generalized dissipativity analysis for the recurrent neural networks (RNNs) with time-varying delays. The generalized dissipativity analysis contains a few previous known results, such as the passivity, (Q, R, S) -dissipativity, H-infinity performance and L-2-L-infinity performance in a unified framework. The delay interval with fixed terminals is changed into a dynamical one with adjustable delay interval based on convex combination technique (CCT), which is called adjustable delay interval method (ADIM). A novel augmented Lyapunov-Krasovskii functional (LKF) comprising triple integral terms and considering more information about neuron activation functions is constructed, in which the integral interval associated with delayed variables is not fixed. We give some sufficient conditions in terms of linear matrix inequalities (LMIs) to guarantee stability and generalized dissipativity of the considered neural networks. Finally, numerical examples are provided to demonstrate the effectiveness and less conservative of the obtained theoretical results. (C) 2017 Published by Elsevier B.V.
机译:本文涉及具有时变时滞的递归神经网络(RNN)的广义耗散分析。广义耗散性分析包含一些先前已知的结果,例如在统一框架中的无源性,(Q,R,S)耗散性,H-无穷大性能和L-2-L-无穷大性能。基于凸组合技术(CCT),将具有固定端子的延迟间隔更改为具有可调延迟间隔的动态延迟间隔,这称为可调延迟间隔方法(ADIM)。构造了包括三重积分项并考虑有关神经元激活功能的更多信息的新颖的增强Lyapunov-Krasovskii功能(LKF),其中与延迟变量相关的积分间隔不固定。我们根据线性矩阵不等式(LMI)给出了一些充分的条件,以保证所考虑的神经网络的稳定性和广义耗散性。最后,通过数值例子说明了所获得理论结果的有效性和保守性。 (C)2017由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号