首页> 外文期刊>Neurocomputing >A sparse autoencoder compressed sensing method for acquiring the pressure array information of clothing
【24h】

A sparse autoencoder compressed sensing method for acquiring the pressure array information of clothing

机译:一种稀疏的自动编码器压缩感知方法,用于获取衣物的压力阵列信息

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we integrate some ideas of sparse autoencoder of deep learning into compressed sensing (CS) theory, and set up a sparse autoencoder compressed sensing (SAECS) model, which can improve the compressed sampling process of CS with compression of sparse autoencoder in deep learning. The original CS theory has no function of autonomic regulation, so we introduce the idea of sparse autoencoder of deep learning to improve CS theory. Then we calculate the error between the recovery output data and the input data. By judging the obtained error and the acceptable error, the SAECS model can choose autonomously the most appropriate sparsity and the most appropriate length of measurement vector. This SAECS model can then reconstruct the original signal that can satisfy the acceptable error requirement with the minimum length of measurement vector in CS theory. We investigate the effectiveness of the proposed method by using sampled pressure data from human body model. Experimental results demonstrate that, in comparison with the state-of-the-art methods for running time, our SACES approach can effectively decrease the running time to find the shortest measurement vector in the case of accepted error. (C) 2017 Elsevier B.V. All rights reserved.
机译:在本文中,我们将深度学习的稀疏自动编码器的一些思想整合到了压缩感知(CS)理论中,并建立了一个稀疏自动编码器压缩感知(SAECS)模型,该模型可以通过压缩稀疏自动编码器来改善CS的压缩采样过程。深度学习。最初的CS理论没有自动调节的功能,因此我们引入了深度学习的稀疏自动编码器的思想来改进CS理论。然后,我们计算恢复输出数据和输入数据之间的误差。通过判断获得的误差和可接受的误差,SAECS模型可以自主选择最合适的稀疏度和最合适的测量矢量长度。然后,该SAECS模型可以重构满足CS理论中最小测量矢量长度的,可以满足可接受误差要求的原始信号。我们通过使用人体模型的采样压力数据来研究该方法的有效性。实验结果表明,与最新的运行时间方法相比,我们的SACES方法可以有效地减少运行时间,以在出现误差的情况下找到最短的测量向量。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第31期|1500-1510|共11页
  • 作者单位

    Donghua Univ, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China;

    Donghua Univ, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China;

    Donghua Univ, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China;

    Donghua Univ, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sparse autoencoder; Deep learning; Neural network; Compressed sensing; Pressure array; Human body;

    机译:稀疏自动编码器;深度学习;神经网络;压缩感测;压力阵列;人体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号