首页> 外文期刊>Neurocomputing >The architecture of a fault-tolerant modular neurocomputer based on modular number projections
【24h】

The architecture of a fault-tolerant modular neurocomputer based on modular number projections

机译:基于模块化数字投影的容错模块化神经计算机的体系结构

获取原文
获取原文并翻译 | 示例

摘要

AbstractThis paper suggests a rather efficient architecture for an error correction unit of a residue number system (RNS) that is based on a redundant RNS (RRNS) and applied in parallel data processing structures owing to its capability to improve information stability in calculations. However, the high efficiency of error correction is still not achieved due to the need in the expensive and complex operators that require substantial computational resources and considerable execution time. The suggested error correction method employs the Chinese remainder theorem (CRT) and artificial neural networks (ANN) that appreciably simplify the process of error detection, localization and correction. The key components of the error correction procedure are optimized using (a) the mixed radix conversion (MRC), i.e., the parallel conversion of the numbers from an RNS into the mixed radix number system (MRNS), and (b) the adaptation of neural networks to different sets of RNS moduli (bases) and also to the modular arithmetic during the computation of modular number projections and the restoration of the correct residue on a faulty module. Therefore, the expensive topological structures of neural networks are replaced with the reconfiguration using the weight coefficients switching. In comparison with the existing CRT-based method of projection calculation, the suggested method yields a 20%–30% reduction in power consumption, yet requiring by 10%–20% less FPGA resources for implementation.
机译: 摘要 本文提出了一种有效的残差编号系统(RNS)纠错单元架构,该架构基于冗余RNS(RRNS)并应用于并行数据中处理结构,因为它有能力提高计算中的信息稳定性。但是,由于需要大量的计算资源和大量的执行时间的昂贵且复杂的运算符的需求,仍然无法实现高效率的纠错。所建议的纠错方法采用了中国剩余定理(CRT)和人工神经网络(ANN),可以大大简化错误检测,定位和纠正的过程。使用(a)混合基数转换(MRC),即将数字从RNS并行转换为混合基数系统(MRNS),以及(b)自适应神经网络连接到不同的RNS模数集(基数),以及在计算模块数投影和恢复故障模块上正确残差的过程中的模块算法。因此,使用权重系数切换将神经网络的昂贵拓扑结构替换为重新配置。与现有的基于CRT的投影计算方法相比,建议的方法可将功耗降低20%–30%,但实现所需的FPGA资源却减少了10%–20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号