首页> 外文期刊>Neurocomputing >A new model to optimize the architecture of a fault-tolerant modular neurocomputer
【24h】

A new model to optimize the architecture of a fault-tolerant modular neurocomputer

机译:优化容错模块化神经计算机体系结构的新模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present some results on error detection and correction in a modular neurocomputer that are based on redundant residue number systems. The error correction method developed below involves the modified Chinese Remainder Theorem with fractions and uses a Hopfield neural network to correct the errors. The suggested approach eliminates the need for extending the bases of a residue number system, a costly operation required in case of syndrome decoding with error syndromes calculation on the control bases of the system. Also the approach does not utilize the projection method, another costly operation intended to localize errors (i.e., to detect the moduli associated with faulty digits). The well-known procedures mentioned above seem inefficient in terms of practical implementation, as they employ a mixed radix number system: transition to such a system is iterative and may affect the performance of a whole neurocomputer. Owing to the exclusion of these costly operations, the suggested approach significantly simplifies error correction procedures for integer numbers.
机译:在本文中,我们介绍了基于冗余残数系统的模块化神经计算机中的错误检测和纠正结果。下面开发的错误校正方法涉及带有分数的改进的中国余数定理,并使用Hopfield神经网络来校正错误。所提出的方法消除了扩展残差数系统的基础的需要,这是在对伴随系统的控制基础进行错误校正子计算的校正子解码的情况下所需的昂贵操作。另外,该方法没有利用投影方法,这是旨在定位误差(即,检测与错误数字相关的模量)的另一项昂贵的操作。上面提到的众所周知的过程在实际实现方面似乎效率低下,因为它们使用了混合的基数系统:迭代到这种系统是迭代的,并且可能影响整个神经计算机的性能。由于排除了这些昂贵的操作,因此建议的方法显着简化了整数的纠错过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号