首页> 外文期刊>Neurocomputing >A hybrid approach combining an extended BBO algorithm with an intuitionistic fuzzy entropy weight method for QoS-aware manufacturing service supply chain optimization
【24h】

A hybrid approach combining an extended BBO algorithm with an intuitionistic fuzzy entropy weight method for QoS-aware manufacturing service supply chain optimization

机译:结合扩展BBO算法和直觉模糊熵权法的QoS感知制造服务供应链优化混合方法

获取原文
获取原文并翻译 | 示例

摘要

HighlightsA new fuzzy QoS-aware multi-objective mathematical model is proposed.A hybrid approach that combines an extended BBO with the IFEW method is presented.BBO is extended by introducing a new operator called invasion operator.The results show the practicality, effectiveness, and efficiency of extended BBO.AbstractWith the increasing complexity of manufacturing tasks, selecting an optimal manufacturing service supply chain has become an important challenge, especially in fuzzy manufacturing environments. In this study, we first propose a new fuzzy quality of service (QoS)-aware multi-objective mathematical model for evaluating the global QoS value of a manufacturing service supply chain including four basic composite structures. Then, we present a hybrid approach that combines the biogeography-based optimization (BBO) algorithm with the intuitionistic fuzzy entropy weight (IFEW) method, to effectively solve the manufacturing service supply chain optimization (MSSCO) problem. Furthermore, the IFEW method is adapted to obtain a more accurate preference weight for each QoS attribute, by further considering the degrees of influence of different decision makers. In addition, the BBO algorithm is extended to effectively obtain a manufacturing service supply chain (MSSC) with an optimal fuzzy QoS value by improving its standard migration and mutation operators, and introducing a new operator called the invasion operator. Finally, we perform three sets of simulation experiments to illustrate the practicality, effectiveness, and efficiency of our proposed method, based on comparisons with the standard BBO algorithm and two other population-based optimization algorithms, namely the genetic algorithm and differential evolution.
机译: 突出显示 提出了一种新的模糊QoS感知多目标数学模型。 提出了一种结合了扩展BBO与IFEW方法的混合方法。 BBO通过引入一个称为入侵运算符的新运算符进行了扩展。 结果显示扩展BBO的实用性,有效性和效率。 摘要 随着制造任务越来越复杂,选择最佳制造服务供应链已成为一项重要挑战,尤其是在模糊制造环境中。在这项研究中,我们首先提出了一种新的可感知服务质量(QoS)的多目标数学模型,用于评估包括四个基本复合结构的制造服务供应链的全局QoS值。然后,我们提出了一种混合方法,将基于生物地理的优化(BBO)算法与直觉模糊熵权(IFEW)方法相结合,以有效解决制造服务供应链优化(MSSCO)问题。此外,通过进一步考虑不同决策者的影响程度,IFEW方法适用于针对每个QoS属性获得更准确的偏好权重。此外,通过改进BBO算法的标准迁移和变异算子,并引入一种称为入侵算子的新算子,扩展了BBO算法以有效地获得具有最佳模糊QoS值的制造服务供应链(MSSC)。最后,在与标准BBO算法和其他两种基于种群的优化算法(即遗传算法和差异进化)进行比较的基础上,我们进行了三组仿真实验,以说明该方法的实用性,有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号