首页> 外文期刊>Neural processing letters >A Hybrid Intelligent Morphological Approach for Stock Market Forecasting
【24h】

A Hybrid Intelligent Morphological Approach for Stock Market Forecasting

机译:股市预测的混合智能形态学方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a hybrid intelligent morphological approach is presented for stock market forecasting. It consists of a hybrid intelligent model composed of a Modular Morphological Neural Network (MMNN) and a Modified Genetic Algorithm (MGA), which searches for the minimum number of time lags for a correct time series representation, as well as by the initial weights, architecture and number of modules of the MMNN. Each element of the MGA population is trained via Back Propagation (BP) algorithm to further improve the parameters supplied by the MGA. Initially, the proposed method chooses the most tuned prediction model for time series representation, then it performs a behavioral statistical test in the attempt to adjust time phase distortions that appear in financial time series. An experimental analysis is conducted with the proposed method using four real world time series and five well-known performance measurements, demonstrating consistent better performance of this kind of morphological system.
机译:本文提出了一种混合智能形态学方法进行股票市场预测。它由一个混合智能模型组成,该模型由模块化形态神经网络(MMNN)和改进遗传算法(MGA)组成,该模型搜索最小时滞以获取正确的时间序列表示以及初始权重, MMNN的体系结构和模块数量。通过反向传播(BP)算法对MGA群体的每个元素进行训练,以进一步改善MGA提供的参数。最初,提出的方法选择最优化的预测模型进行时间序列表示,然后执行行为统计测试,以尝试调整出现在金融时间序列中的时间相位失真。利用所提出的方法使用四个真实世界时间序列和五个著名的性能测量结果进行了实验分析,证明了这种形态系统始终如一的更好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号