首页> 外文期刊>Neural processing letters >AVLR-EBP: A Variable Step Size Approach to Speed-up the Convergence of Error Back-Propagation Algorithm
【24h】

AVLR-EBP: A Variable Step Size Approach to Speed-up the Convergence of Error Back-Propagation Algorithm

机译:AVLR-EBP:可变步长方法,可加快误差反向传播算法的收敛速度

获取原文
获取原文并翻译 | 示例

摘要

A critical issue of Neural Network based large-scale data mining algorithms is how to speed up their learning algorithm. This problem is particularly challenging for Error Back-Propagation (EBP) algorithm in Multi-Layered Perceptron (MLP) Neural Networks due to their significant applications in many scientific and engineering problems. In this paper, we propose an Adaptive Variable Learning Rate EBP algorithm to attack the challenging problem of reducing the convergence time in an EBP algorithm, aiming to have a highspeed convergence in comparison with standard EBP algorithm. The idea is inspired from adaptive filtering, which leaded us into two semi-similar methods of calculating the learning rate. Mathematical analysis of AVLR-EBP algorithm confirms its convergence property. The AVLR-EBP algorithm is utilized for data classification applications. Simulation results on many well-known data sets shall demonstrate that this algorithm reaches to a considerable reduction in convergence time in comparison to the standard EBP algorithm. The proposed algorithm, in classifying the IRIS, Wine, Breast Cancer, Semeion and SPECT Heart datasets shows a reduction of the learning epochs relative to the standard EBP algorithm.
机译:基于神经网络的大规模数据挖掘算法的一个关键问题是如何加快其学习算法的速度。由于多层感知器(MLP)神经网络中的错误反向传播(EBP)算法在许多科学和工程问题中的重要应用,因此该问题尤其具有挑战性。在本文中,我们提出了一种自适应可变学习率EBP算法,以解决在EBP算法中减少收敛时间这一具有挑战性的问题,目的是与标准EBP算法相比具有较高的收敛速度。这个想法源于自适应滤波,它使我们进入了两种计算学习率的半相似方法。对AVLR-EBP算法的数学分析证实了其收敛性。 AVLR-EBP算法用于数据分类应用程序。在许多众所周知的数据集上的仿真结果将证明,与标准EBP算法相比,该算法在收敛时间上有可观的减少。所提出的算法在对IRIS,葡萄酒,乳腺癌,Semion和SPECT心脏数据集进行分类时,相对于标准EBP算法,显示了学习时间的减少。

著录项

  • 来源
    《Neural processing letters》 |2011年第2期|p.201-214|共14页
  • 作者单位

    Department of Computer Science and IT, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran;

    Department of Computer Science and IT, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran;

    Computer Engineering Group, Engineering Department, Zanjan University, Zanjan, Iran;

    Computer Engineering Department, Iran University of Science and Technology, Tehran, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    neural networks; MLP; EBP; algorithm; classification;

    机译:神经网络;MLP;EBP;算法;分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号