首页> 外文期刊>Neural processing letters >Covariance Matrix Estimation with Multi-Regularization Parameters based on MDL Principle
【24h】

Covariance Matrix Estimation with Multi-Regularization Parameters based on MDL Principle

机译:基于MDL原理的多正则化参数协方差矩阵估计

获取原文
获取原文并翻译 | 示例

摘要

Regularization is a solution for the problem of unstable estimation of covariance matrix with a small sample set in Gaussian classifier. In many applications such as image restoration, sparse representation, we have to deal with multi-regularization parameters problem. In this paper, the case of covariance matrix estimation with multi-regularization parameters is investigated, and an estimate method called as KLIM_L is derived theoretically based on Minimum Description Length (MDL) principle for the small sample size problem with high dimension setting. KLIM_L estimator can be regarded as a generalization of KLIM estimator in which local difference in each dimension is considered. Under the framework of MDL principle, a selection method of multi-regularization parameters is also developed based on the minimization of the Kullback-Leibler information measure, which is simply and directly estimated by point estimation under the approximation of two-order Taylor expansion. The computational cost to estimate multi-regularization parameters with KLIM_L method is less than those with RDA (Regularized Discriminant Analysis) and LOOC (leave-one-out covariance matrix estimate) in which cross validation technique is adopted. Experiments show that higher classification accuracy can be achieved by using the proposed KLIM_L estimator.
机译:正则化是在高斯分类器中使用小样本集解决协方差矩阵不稳定估计问题的解决方案。在许多应用中,例如图像恢复,稀疏表示,我们必须处理多正则化参数问题。本文研究了使用多正则化参数进行协方差矩阵估计的情况,并针对最小样本量问题和高维设置,基于最小描述长度(MDL)原理从理论上推导了一种称为KLIM_L的估计方法。 KLIM_L估计器可以看作是KLIM估计器的概括,其中考虑了每个维度的局部差异。在MDL原理的框架下,还基于最小化Kullback-Leibler信息量度的方法,开发了一种多正则化参数的选择方法,该方法通过在二阶泰勒展开式的逼近下通过点估计来简单直接地进行估计。与采用交叉验证技术的RDA(正则判别分析)和LOOC(留一法协方差矩阵估计)相比,用KLIM_L方法估计多正则化参数的计算成本要低。实验表明,通过使用提出的KLIM_L估计器,可以实现更高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号