首页> 外文期刊>Neural processing letters >Opposite Maps: Vector Quantization Algorithms for Building Reduced-Set SVM and LSSVM Classifiers
【24h】

Opposite Maps: Vector Quantization Algorithms for Building Reduced-Set SVM and LSSVM Classifiers

机译:相反的地图:用于构建精简集SVM和LSSVM分类器的矢量量化算法

获取原文
获取原文并翻译 | 示例

摘要

A novel method, called Opposite Maps, is introduced with the aim of generating reduced sets for efficiently training of support vector machines (SVM) and least squares support vector machines (LSSVM) classifiers. The main idea behind the proposed approach is to train two vector quantization (VQ) algorithms (one for each class, (&)_(-1)and (&)_(+1), in a binary classification context) and then, for the patterns of one class, say (&)_(-1), to find the closest prototypes among those belonging to the VQ algorithm trained with patterns of the other class, say (&)_(+1). The subset of patterns mapped to the selected prototypes in both VQ algorithms form the reduced set to be used for training SVM and LSSVM classifiers. Comprehensive computer simulations using synthetic and real-world datasets reveal that the proposed approach is very efficient and independent of the type of VQ algorithm used.
机译:引入一种称为对面地图的新颖方法,其目的是生成精简集,以有效地训练支持向量机(SVM)和最小二乘支持向量机(LSSVM)分类器。提出的方法背后的主要思想是训练两种矢量量化(VQ)算法(在二进制分类的上下文中,每个类别分别对(&)_(-1)和(&)_(+ 1)进行训练),然后,对于一个类别的模式,例如(&)_(-1),以找到属于使用另一类别的模式(例如&& __ + 1)训练的VQ算法的原型中最接近的原型。在两种VQ算法中映射到所选原型的模式子集形成了用于训练SVM和LSSVM分类器的简化集。使用合成的和真实的数据集进行的全面计算机模拟表明,该方法非常有效,并且与所使用的VQ算法的类型无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号