首页> 外文期刊>Neural processing letters >A Cognitive Architecture Based on a Learning Classifier System with Spiking Classifiers
【24h】

A Cognitive Architecture Based on a Learning Classifier System with Spiking Classifiers

机译:基于带有尖峰分类器的学习分类器系统的认知架构

获取原文
获取原文并翻译 | 示例

摘要

Learning classifier systems (LCS) are population-based reinforcement learners that were originally designed to model various cognitive phenomena. This paper presents an explicitly cognitive LCS by using spiking neural networks as classifiers, providing each classifier with a measure of temporal dynamism. We employ a constructivist model of growth of both neurons and synaptic connections, which permits a genetic algorithm to automatically evolve sufficiently-complex neural structures. The spiking classifiers are coupled with a temporally-sensitive reinforcement learning algorithm, which allows the system to perform temporal state decomposition by appropriately rewarding "macro-actions", created by chaining together multiple atomic actions. The combination of temporal reinforcement learning and neural information processing is shown to outperform benchmark neural classifier systems, and successfully solve a robotic navigation task.
机译:学习分类器系统(LCS)是基于人口的强化学习者,最初设计用于模拟各种认知现象。本文通过使用尖峰神经网络作为分类器,提出了一种显式认知LCS,为每个分类器提供了时间动态性的度量。我们采用了神经元和突触连接的增长的建构主义模型,该模型允许遗传算法自动进化足够复杂的神经结构。峰值分类器与对时间敏感的强化学习算法结合在一起,该算法使系统可以通过适当奖励通过将多个原子动作链接在一起而产生的“宏观动作”来执行时间状态分解。临时强化学习和神经信息处理的结合表现出优于基准神经分类器系统,并成功解决了机器人导航任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号