首页> 外文期刊>Neural processing letters >Embedded Manifold-Based Kernel Fisher Discriminant Analysis for Face Recognition
【24h】

Embedded Manifold-Based Kernel Fisher Discriminant Analysis for Face Recognition

机译:基于嵌入式流形的核Fisher判别分析用于人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Manifold learning algorithms mainly focus on discovering the intrinsic low-dimensional manifold embedded in the high-dimensional Euclidean space. Among them, locally linear embedding (LLE) is one of the most promising dimensionality reduction methods. Though LLE holds local neighborhood information, it doesn't fully take the label information and the global structure information into account for classification tasks. To enhance classification performance, this paper proposes a novel dimensionality reduction method for face recognition, termed embedded manifold-based kernel Fisher discriminant analysis, or EMKFDA for short. The goal of EMKFDA is to emphasize the local geometry structure of the data while utilizing the global discriminative structure obtained from linear discriminant analysis, which can maximize the between-class scatter and minimize the within-class scatter. In addition, by optimizing an objective function in a kernel feature space, nonlinear features can be extracted. Thus, EMKFDA, which combines manifold criterion and Fisher criterion, has better discrimination, and is more suitable for recognition tasks. Experiments on the ORL, Yale, and FERET face databases show the impressive performance of the proposed method. Results show that this proposed algorithm exceeds other popular approaches reported in the literature and achieves much higher recognition accuracy.
机译:流形学习算法主要着眼于发现嵌入高维欧几里德空间的内在低维流形。其中,局部线性嵌入(LLE)是最有前途的降维方法之一。尽管LLE保留本地邻居信息,但它并未完全将标签信息和全局结构信息纳入分类任务。为了提高分类性能,本文提出了一种新的用于人脸识别的降维方法,称为基于嵌入式流形的核Fisher Fisher判别分析,或简称EMKFDA。 EMKFDA的目标是强调数据的局部几何结构,同时利用从线性判别分析获得的全局判别结构,这可以最大化类间散布和最小化类内散布。另外,通过优化内核特征空间中的目标函数,可以提取非线性特征。因此,结合了流水线准则和费舍尔准则的EMKFDA具有更好的辨别力,并且更适合识别任务。在ORL,Yale和FERET人脸数据库上进行的实验表明,该方法具有令人印象深刻的性能。结果表明,该算法优于文献报道的其他流行方法,具有更高的识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号