首页> 外文期刊>Neural processing letters >Semi-supervised Collective Classification in Multi-attribute Network Data
【24h】

Semi-supervised Collective Classification in Multi-attribute Network Data

机译:多属性网络数据中的半监督集体分类

获取原文
获取原文并翻译 | 示例

摘要

Multi-attribute network refers to network data with multiple attribute views and relational view. Although semi-supervised collective classification has been investigated extensively, little attention is received for such kind of network data. In this paper, we aim to study and solve the semi-supervised learning problem for multi-attribute networks. There are two important challenges: (1) how to extract effective information from the rich multi-attribute and relational information; (2) how to make use of unlabeled data in the network. We propose a new generative model with network regularization, called MARL, which addresses the two challenges. In the approach, a generative model based on the probabilistic latent semantic analysis method is developed to leverage attribute information, and a network regularizer is incorporated to smooth label probability with relational information and unlabeled data. Comprehensive experiments on various data sets have been conducted to demonstrate the effectiveness of the proposed MARL, and the results reveal that our approach outperforms existing collective classification methods and multi-view classification methods in terms of accuracy.
机译:多属性网络是指具有多个属性视图和关系视图的网络数据。尽管已经对半监督的集体分类进行了广泛的研究,但是对于这类网络数据却鲜有关注。本文旨在研究和解决多属性网络的半监督学习问题。存在两个重要挑战:(1)如何从丰富的多属性和关系信息中提取有效信息; (2)如何利用网络中未标记的数据。我们提出了一种新的带有网络正则化的生成模型,称为MARL,它解决了两个挑战。在该方法中,开发了一种基于概率潜在语义分析方法的生成模型以利用属性信息,并结合了网络正则化器以平滑带有关系信息和未标记数据的标记概率。已经对各种数据集进行了全面的实验,以证明所提出的MARL的有效性,结果表明,我们的方法在准确性方面优于现有的集体分类方法和多视图分类方法。

著录项

  • 来源
    《Neural processing letters》 |2017年第1期|153-172|共20页
  • 作者单位

    Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen Key Lab Internet Informat Collaborat, Shenzhen, Peoples R China;

    Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen Key Lab Internet Informat Collaborat, Shenzhen, Peoples R China;

    Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen Key Lab Internet Informat Collaborat, Shenzhen, Peoples R China;

    East China Jiaotong Univ, Sch Informat Engn Dept, Nanchang, Jiangxi, Peoples R China;

    City Univ Hong Kong, Dept Informat Syst, Kowloon Tong, Hong Kong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semi-supervised learning; Collective classification; Multiple attributes; Network data;

    机译:半监督学习;集体分类;多种属性;网络数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号