首页> 外文期刊>Neural processing letters >Single Multiplicative Neuron Model Artificial Neural Network with Autoregressive Coefficient for Time Series Modelling
【24h】

Single Multiplicative Neuron Model Artificial Neural Network with Autoregressive Coefficient for Time Series Modelling

机译:具有时间序列建模的具有自回归系数的单乘神经元模型人工神经网络

获取原文
获取原文并翻译 | 示例

摘要

Single multiplicative neuron model and multilayer perceptron have been commonly used for time series prediction problem. Having a simple structure and features of easily applicable differentiates the single multiplicative neuron model from the multilayer perception. While, multilayer perceptron just as many other artificial neural networks are data-based methods, single multiplicative neuron model has a model structure due to it is composed of a single neuron. Multilayer perceptron can highly compliance with data by changing its architecture, though single multiplicative neuron model, in this respect, is insufficient. In this study, to overcome this problem of single multiplicative neuron model, a new model that its weights and biases are obtained by way of autoregressive equations is proposed. Since the time indexes are considered to determine weights and biases from the autoregressive models, the proposed neural network can be evaluated as a data-based model. To show the performance and capability of the proposed method, various implementations have been executed over some well-known data sets. And the obtained results demonstrate that data-based proposed method has outstanding forecasting performance.
机译:单乘神经元模型和多层感知器已普遍用于时间序列预测问题。具有简单易用的结构和特征,可将单个乘法神经元模型与多层感知区分开。多层感知器与其他许多人工神经网络一样都是基于数据的方法,而单个乘法神经元模型由于具有单个神经元而具有模型结构。多层感知器可以通过更改其体系结构来高度符合数据,尽管在此方面单乘法神经元模型还不够。在这项研究中,为克服单乘法神经元模型的问题,提出了一种通过自回归方程获得权重和偏差的新模型。由于考虑了时间指标来确定自回归模型的权重和偏差,因此可以将所提出的神经网络评估为基于数据的模型。为了显示所提出方法的性能和功能,已对一些众所周知的数据集执行了各种实现。所得结果表明,基于数据的方法具有很好的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号