首页> 外文期刊>Neural processing letters >Multi-Objective Memetic Algorithms with Tree-Based Genetic Programming and Local Search for Symbolic Regression
【24h】

Multi-Objective Memetic Algorithms with Tree-Based Genetic Programming and Local Search for Symbolic Regression

机译:具有基于树的基于树的遗传编程和本地搜索符号回归的多目标迭代算法

获取原文
获取原文并翻译 | 示例
           

摘要

Symbolic regression is to search the space of mathematical expressions to find a model that best fits a given dataset. As genetic programming (GP) with the tree representation can represent solutions as expression trees, it is popularly-used for regression. However, GP tends to evolve unnecessarily large programs (known as bloat), causing excessive use of CPU time/memory and evolving solutions with poor generalization ability. Moreover, even though the importance of local search has been proved in augmenting the search ability of GP (termed as memetic algorithms), local search is underused in GP-based methods. This work aims to handle the above problems simultaneously. To control bloat, a multi-objective (MO) technique (NSGA-II, Non-dominant Sorting Genetic Algorithm) is selected to incorporate with GP, forming a multi-objective GP (MOGP). Moreover, three mutation-based local search operators are designed and incorporated with MOGP respectively to form three multi-objective memetic algorithms (MOMA), i.e. MOMA_MR (MOMA with Mutation-based Random search), MOMA_MF (MOMA with Mutation-based Function search) and MOMA_MC (MOMA with Mutation-based Constant search). The proposed methods are tested on both benchmark functions and real-world applications, and are compared with both GP-based (i.e. GP and MOGP) and nonGP-based symbolic regression methods. Compared with GP-based methods, the proposed methods can reduce the risk of bloat with the evolved solutions significantly smaller than GP solutions, and the local search strategies introduced in the proposed methods can improve their search ability with the evolved solutions dominating MOGP solutions. In addition, among the three proposed methods, MOMA_MR performs best in RMSE for testing, yet it consumes more training time than others. Moreover, compared with six reference nonGP-based symbolic regression methods, MOMA_MR generally performs better than or similar to them consistently.
机译:符号回归是搜索数学表达式的空间以查找最能拟适合给定数据集的模型。随着遗传编程(GP)与树表示可以将解决方案代表为表达树,它普遍用于回归。然而,GP倾向于不必要地发展大型程序(称为膨胀),导致CPU时间/内存的过度使用以及具有较差的泛化能力。此外,即使已经证明了本地搜索的重要性在增强GP的搜索能力(被称为Memet算法)时,也以基于GP的方法耗费本地搜索。这项工作旨在同时处理上述问题。为了控制膨胀,选择多目标(MO)技术(NSGA-II,非显着分选遗传算法)以与GP合并,形成多目标GP(MOGP)。此外,三个基于突变的本地搜索运算符分别设计和并入MogP,以形成三个多目标麦克酸算法(MOMA),即MOMA_MR(基于突变的随机搜索),MOMA_MF(MOMA,具有基于突变的函数搜索)和MOMA_MC(基于突变的常量搜索MOMA)。所提出的方法在基准函数和现实世界应用上进行测试,并与基于GP的(即GP和MOGP)和基于NONGP的符号回归方法进行比较。与基于GP的方法相比,所提出的方法可以降低膨胀的风险,随着GP解决方案明显小于GP解决方案,在所提出的方法中引入的本地搜索策略可以通过主导MOGP解决方案的演进解决方案来提高他们的搜索能力。此外,在三种提出的方​​法中,MOMA_MR在RMSE进行测试中表现最佳,但它会消耗比其他方法更多的培训时间。此外,与六个基于NONGP的符号回归方法相比,MOMA_MR通常比它们一致地更好地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号