首页> 外文期刊>Neural processing letters >Weighted Discriminative Sparse Representation for Image Classification
【24h】

Weighted Discriminative Sparse Representation for Image Classification

机译:图像分类的加权鉴别稀疏表示

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation methods based on l(2) norm regularization have attracted much attention due to its low computational cost and competitive performance. How to enhance the discriminability of l(2) norm regularization-based representation method is a meaningful work. In this paper, we put forward a novel l(2) norm regularization-based representation method, called Weighted Discriminative Sparse Representation for Classification (WDSRC), in which we consider the global discriminability and the local discriminability using two discriminative regularization terms of representation. The global discriminability is obtained by decorrelating the representation results stemming from all distinct classes. The local discriminability is achieved by the weighted representation in which the representation coefficient of the training images dissimilar to the test image will be reduced and the representation coefficient of the training images similar to the test image will be increased, which restrains the training images dissimilar to the test image and promotes the training images similar to the test image as much as possible in representing the test sample. By considering the global and local discriminability of representations simultaneously, the proposed WDSRC method can gain more discriminative representation for classification. Extensive experiments on benchmark datasets of object, face, action and flower demonstrate the effectiveness of the proposed WDSRC method.
机译:基于L(2)规范正则化的稀疏表示方法由于其低计算成本和竞争性能而引起了很多关注。如何增强L(2)规范正则化的表示方法的可辨性是有意义的工作。在本文中,我们提出了一种新的L(2)规范正则化的表示方法,称为对分类(WDSRC)的加权鉴别稀疏表示,其中我们考虑了使用两种判别正则化的代表条款来考虑全球歧视性和局部可怜的歧视性。通过使来自所有不同类别的表示结果去相关性来获得全局辨别性。通过加权表示来实现局部可判例性,其中将减少与测试图像不同的训练图像的表示系数,并且将增加与测试图像类似的训练图像的表示系数,这限制了与之相似的训练图像在代表测试样品时,测试图像和促进类似于测试图像的训练图像。通过同时考虑陈述的全球和局部可怜,所提出的WDSRC方法可以获得更多歧视的分类表示。关于物体,面部,动作和花的基准数据集的广泛实验证明了所提出的WDSRC方法的有效性。

著录项

  • 来源
    《Neural processing letters》 |2021年第3期|2047-2065|共19页
  • 作者单位

    Jiangnan Univ Sch Internet Things Engn Wuxi 214122 Jiangsu Peoples R China|Hubei Engn Univ Informat Technol Ctr Xiaogan 432000 Hubei Peoples R China;

    Jiangnan Univ Sch Internet Things Engn Wuxi 214122 Jiangsu Peoples R China;

    Jiangnan Univ Sch Internet Things Engn Wuxi 214122 Jiangsu Peoples R China|Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming 650500 Yunnan Peoples R China;

    Jiangnan Univ Sch Internet Things Engn Wuxi 214122 Jiangsu Peoples R China;

    Jiangnan Univ Sch Internet Things Engn Wuxi 214122 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discriminative representation; Sparse representation; Global and local discriminability; Image classification;

    机译:歧视性代表;稀疏表示;全球和局部可辨别性;图像分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号