首页> 外文期刊>Neural processing letters >Pre-Training Acquisition Functions by Deep Reinforcement Learning for Fixed Budget Active Learning
【24h】

Pre-Training Acquisition Functions by Deep Reinforcement Learning for Fixed Budget Active Learning

机译:通过深度加强学习进行预训练课程,以获得固定预算主动学习

获取原文
获取原文并翻译 | 示例

摘要

There are many situations in supervised learning where the acquisition of data is very expensive and sometimes determined by a user's budget. One way to address this limitation is active learning. In this study, we focus on a fixed budget regime and propose a novel active learning algorithm for the pool-based active learning problem. The proposed method performs active learning with a pre-trained acquisition function so that the maximum performance can be achieved when the number of data that can be acquired is fixed. To implement this active learning algorithm, the proposed method uses reinforcement learning based on deep neural networks as as a pre-trained acquisition function tailored for the fixed budget situation. By using the pre-trained deep Q-learning-based acquisition function, we can realize the active learner which selects a sample for annotation from the pool of unlabeled samples taking the fixed-budget situation into account. The proposed method is experimentally shown to be comparable with or superior to existing active learning methods, suggesting the effectiveness of the proposed approach for the fixed-budget active learning.
机译:监督学习有许多情况,其中收购数据非常昂贵,有时由用户的预算确定。解决这个限制的一种方法是活动学习。在这项研究中,我们专注于固定的预算制度,并提出了一种基于池的主动学习问题的新型主动学习算法。所提出的方法利用预先训练的获取功能执行主动学习,使得当可以修复的数据的数量时,可以实现最大性能。为了实现这种活跃的学习算法,该方法使用基于深神经网络的增强学习,作为针对固定预算状况定制的预先训练的采集功能。通过使用预先训练的深度Q学习的采集功能,我们可以实现活动学习者,该学习者选择从未标记的样本池中注释的样本,以考虑固定预算情况。所提出的方法是通过实验显示的与现有的活性学习方法相当,表明提出的固定预算活跃学习的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号