首页> 外文期刊>Neural processing letters >A Robust Segmentation Method Based on Improved U-Net
【24h】

A Robust Segmentation Method Based on Improved U-Net

机译:一种基于改进U-Net的鲁棒分割方法

获取原文
获取原文并翻译 | 示例

摘要

Accurately reading spinal CT images is very important in clinical, but it usually costs some minutes and deeply depends on doctor's individual experiences. In this paper, we construct a scheme for spinal fracture lesions segmentation based on U-net, by introducing attention module, combining dilated convolution and U-net to get accurate lesions segmentation. First, we present four network schemes to compete in same data set, then get the best one, DU-net(dilated convolution), which replaces original convolution layer with dilated convolution in both contraction path and expansion path of U-net, to increase receptive field for more lesions feature information. Second, we introduce attention module to DU-net for accurate lesions segmentation by focusing on specific regions to improve lesions recognition of training model. Finally, we get prediction results by trained model of lesions segmentation on test data test. The experimental results show that our presented network has a better lesions segmentation performance than U-net, which can save time and reduce patients' suffering clinically.
机译:准确读取脊柱CT图像在临床上非常重要,但通常成本几分钟,深深地取决于医生的个人经历。在本文中,我们通过引入关注模块,将扩张的卷积和U-Net结合到精确的病变分割来构建基于U-Net的脊柱骨折病变分割方案。首先,我们提供了四个网络方案来竞争相同的数据集,然后获得最好的一个,Du-Net(扩张卷积),其取代了U-Net的收缩路径和扩展路径中的扩张卷积的原始卷积层,以增加有接受领域更多病变功能信息。其次,通过专注于特定地区来提高培训模型的病变识别,向Du-Net引入Du-Net的注意力模块。最后,我们通过在测试数据测试上通过培训的病变分段模型获得预测结果。实验结果表明,我们所呈现的网络具有比U-Net更好的病变分割性能,可以节省时间并减少临床患者的痛苦。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号