首页> 外文期刊>Neural processing letters >Symbolic Regression Based Extreme Learning Machine Models for System Identification
【24h】

Symbolic Regression Based Extreme Learning Machine Models for System Identification

机译:基于符号回归的极端学习机模型,用于系统识别

获取原文
获取原文并翻译 | 示例

摘要

Reproducible machine learning models with less number of parameters and fast optimization are preferred in embedded system design for the applications of artificial intelligence. Due to implementation advantages, symbolic regression with genetic programming has been used for modeling data. In addition, extreme learning machines have been designed with acceptable performances in virtue of random learning strategy. In this paper, symbolic regression featured extreme learning machine models are proposed for the system identification. The symbolic regression layer with mathematical operators and basis functions has been randomly constructed instead of genetic programming whereas the output weighting parameters are optimized via least-squares optimization as in extreme learning machines. Consequently; implementable, efficient and easy designed models are constructed for future applications. Comparative results of the proposed and literature models present that proposed models provided smaller mean-squared errors and minimum-descriptive length performances.
机译:用于人工智能应用的嵌入式系统设计中,具有较少数量的参数和快速优化的可再生机器学习模型。由于实现优势,具有遗传编程的符号回归已被用于建模数据。此外,凭借随机学习策略,设计了极限学习机器的性能。在本文中,提出了符号回归特色的极限学习机模型,用于系统识别。具有数学运算符的符号回归层和基函数已经被随机构建而不是基因编程,而输出加权参数通过最小二乘优化优化,如在极端学习机器中。最后;为未来的应用构建可实现的,高效且易于设计的型号。所提出的和文献模型的比较结果存在,提出模型提供了较小的平均误差和最小描述性长度性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号