首页> 外文期刊>Neural processing letters >Smart Animal Detection and Counting Framework for Monitoring Livestock in an Autonomous Unmanned Ground Vehicle Using Restricted Supervised Learning and Image Fusion
【24h】

Smart Animal Detection and Counting Framework for Monitoring Livestock in an Autonomous Unmanned Ground Vehicle Using Restricted Supervised Learning and Image Fusion

机译:使用受限制监督学习和图像融合,在自主无人地面车辆中监测牲畜的智能动物检测和计数框架

获取原文
获取原文并翻译 | 示例

摘要

Automated livestock monitoring is a promising solution for vast and isolated farmlands or cattle stations. The advancement in sensor technology and the rise of unmanned systems have paved the way for the automated systems. In this work, we propose an Unmanned Ground Vehicle (UGV) based livestock detection-counting system for fusion images using restricted supervised learning technique. For image fusion, we propose Dual-scale image Decomposition based Fusion technique (DDF) that fuses visible and thermal images. To reduce the difficulty of ground truth annotation, we introduce Seed Labels focused Object Detector (SLOD) that carefully propagates the annotation to all the object instances in the training images. Further, we propose a novel Restricted Supervised Learning (RSL) technique that produces competitive results with minimal training data. Experimental results show that the proposed RSL is more efficient and accurate when compared to other learning techniques (fully and weakly supervised). On the test data, with only five training images and five seed labels, the restricted supervised learning has improved the average precision from 4.05% (using fully supervised learning) to 80.58% (using restricted supervised learning). With 50 seed labels, the average precision is further boosted to 91.56%. The proposed model is extensively tested on benchmark animal datasets and has achieved an average accuracy of 98.3%.
机译:自动化牲畜监测是广阔和孤立的农田或牛站的有希望的解决方案。传感器技术的进步和无人机系统的兴起为自动化系统铺平了道路。在这项工作中,我们提出了一种基于无人的地面车辆(UGV)的牲畜检测计数系统,用于使用受限制的监督学习技术的融合图像。对于图像融合,我们提出了基于双级图像分解的融合技术(DDF),其保留了可见和热图像。为了减少地面真相注释的难度,我们将种子标签引入聚焦对象检测器(SLOC),将注释传播到训练图像中的所有对象实例。此外,我们提出了一种新的受限监督学习(RSL)技术,可以通过最小的培训数据产生竞争力。实验结果表明,与其他学习技术(完全和弱监督)相比,所提出的RSL更有效和准确。在测试数据上,只有五种训练图像和五种种子标签,受限的监督学习从4.05%(使用完全监督学习)到80.58%(使用受限制的监督学习),提高了平均精度。含有50种种子标签,平均精度进一步升高至91.56%。所提出的模型在基准动物数据集中广泛测试,实现了98.3%的平均精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号