首页> 外文期刊>Neural processing letters >Cost-sensitive Dictionary Learning for Software Defect Prediction
【24h】

Cost-sensitive Dictionary Learning for Software Defect Prediction

机译:软件缺陷预测的成本敏感词典学习

获取原文
获取原文并翻译 | 示例

摘要

In recent years, software defect prediction has been recognized as a cost-sensitive learning problem. To deal with the unequal misclassification losses resulted by different classification errors, some cost-sensitive dictionary learning methods have been proposed recently. Generally speaking, these methods usually define the misclassification costs to measure the unequal losses and then propose to minimize the cost-sensitive reconstruction loss by embedding the cost information into the reconstruction function of dictionary learning. Although promising performance has been achieved, their cost-sensitive reconstruction functions are not well-designed. In addition, no sufficient attentions are paid to the coding coefficients which can also be helpful to reduce the reconstruction loss. To address these issues, this paper proposes a new cost-sensitive reconstruction loss function and introduces an additional cost-sensitive discrimination regularization for the coding coefficients. Both the two terms are jointly optimized in a unified cost-sensitive dictionary learning framework. By doing so, we can achieve the minimum reconstruction loss and thus obtain a more cost-sensitive dictionary for feature encoding of test data. In the experimental part, we have conducted extensive experiments on twenty-five software projects from four benchmark datasets of NASA, AEEEM, Relink and Jureczko. The results, in comparison with ten state-of-the-art software defect prediction methods, demonstrate the effectiveness of learned cost-sensitive dictionary for software defect prediction.
机译:近年来,软件缺陷预测被认为是一个成本敏感的学习问题。为了处理不同分类错误导致的不平等的错误分类损失,最近提出了一些成本敏感的字典学习方法。一般而言,这些方法通常定义错误分类成本以测量不平等损失,然后建议通过将成本信息嵌入文学学习的重建功能来最小化成本敏感的重建损失。虽然已经实现了有希望的表现,但它们的成本敏感的重建功能并不是精心设计。此外,没有足够的关注来支付给编码系数,这也有助于降低重建损失。为了解决这些问题,本文提出了一种新的成本敏感的重建损失功能,并为编码系数引入了额外的成本敏感判别正则化。两种术语都在统一的成本敏感的字典学习框架中联合优化。通过这样做,我们可以实现最小的重建损失,从而获得更成本敏感的字典,用于测试数据的特征编码。在实验部分中,我们在NASA,AEEEM,RELINK和JURECZKO的四个基准数据集中进行了大量的二十五个软件项目实验。结果,与十个最先进的软件缺陷预测方法相比,证明了用于软件缺陷预测的学习成本敏感字典的有效性。

著录项

  • 来源
    《Neural processing letters》 |2020年第3期|2415-2449|共35页
  • 作者单位

    School of information Science and Engineering Changzhou University Changzhou 213164 Jiangsu People's Republic of China;

    School of information Science and Engineering Changzhou University Changzhou 213164 Jiangsu People's Republic of China School of Civil and Environmental Engineering Nanyang Technological University Singapore 639798 Singapore;

    School of information Science and Engineering Changzhou University Changzhou 213164 Jiangsu People's Republic of China;

    School of information Science and Engineering Changzhou University Changzhou 213164 Jiangsu People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Software defect prediction; Cost-sensitive; Dictionary learning; Discrimination;

    机译:软件缺陷预测;成本敏感;字典学习;歧视;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号