首页> 外文期刊>Neural processing letters >Time Series Prediction Method Based on Variant LSTM Recurrent Neural Network
【24h】

Time Series Prediction Method Based on Variant LSTM Recurrent Neural Network

机译:基于变体LSTM经常性神经网络的时间序列预测方法

获取原文
获取原文并翻译 | 示例

摘要

Time series prediction problems are a difficult type of predictive modeling problem. In this paper, we propose a time series prediction method based on a variant long short-term memory (LSTM) recurrent neural network. In the proposed method, we firstly improve the memory module of the LSTM recurrent neural network by merging its forget gate and input gate into one update gate, and using Sigmoid layer to control information update. Using improved LSTM recurrent neural network, we develop a time series prediction model. In the proposed model, the parameter migration method is used model update to ensure the model has good predictive ability after predicting multi-step sequences. Experimental results show, compared with several typical time series prediction models, the proposed method have better performance for long-sequence data prediction.
机译:时间序列预测问题是一种难度的预测建模问题。在本文中,我们提出了一种基于变体长短期存储器(LSTM)复发神经网络的时间序列预测方法。在所提出的方法中,我们首先通过将其忘记的门和输入门合并到一个更新门中,并使用S形层来控制信息更新来改进LSTM经常性神经网络的存储器模块。使用改进的LSTM经常性神经网络,我们开发了一个时间序列预测模型。在所提出的模型中,使用模型更新的参数迁移方法,以确保在预测多步序列后,模型具有良好的预测能力。实验结果表明,与几个典型的时间序列预测模型相比,所提出的方法具有更好的长序数据预测性能。

著录项

  • 来源
    《Neural processing letters》 |2020年第2期|1485-1500|共16页
  • 作者单位

    Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;

    Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;

    Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;

    Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;

    Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;

    Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an 710049 Shaanxi People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Time series prediction; Recurrent neural network; Variant LSTM network;

    机译:深度学习;时间序列预测;经常性神经网络;变体LSTM网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号