机译:基于变体LSTM经常性神经网络的时间序列预测方法
Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;
Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;
Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;
Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;
Xi'an University of Technology Xi'an 710048 Shaanxi People's Republic of China;
Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an 710049 Shaanxi People's Republic of China;
Deep learning; Time series prediction; Recurrent neural network; Variant LSTM network;
机译:CTS-LSTM:基于LSTM的神经网络,用于相关时间序列预测
机译:基于SPI和SPEI的干旱预测,使用LSTM经常性神经网络改变时间尺寸
机译:胆甾醇胶原蛋白糖蛋白的成核和生长:基于直接数值模拟(DNS)和长短期记忆经常性神经网络(LSTM-RNN)的集成的时间序列统计分析
机译:DPAST-RNN:一种使用时态LSTM的双相关注的经常性神经网络,用于时间序列预测
机译:采用双阶段关注经常性神经网络预测的时间序列预测
机译:基于递归神经网络的LSTM模型的变异率分析预测COVID-19的时间序列
机译:基于经常性神经网络和LSTM神经网络的钢铁工人渗透血症风险预测研究